Sample records for antigravity soleus muscle

  1. Biochemical adaptations of antigravity muscle fibers to disuse atrophy

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1978-01-01

    Studies are presented in four parts of this report. The four parts include; (1) studies to gain information on the molecular basis of atrophy by antigravity muscle; (2) studies on the work capacity of antigravity muscles during atrophy and during recovery from atrophy; (3) studies on recovery of degenerated antigravity fibers after removal of hind-limb casts; and (4) studies on the atrophy and recovery of bone. The philosophy of these studies was to identify the time sequence of events in the soleus muscle of the rat following immobilization of the hind limbs, so that the length of the soleus muscle within the fixed limb is less than its resting length. In two separate studies, no decline in the weight of the soleus muscle could be detected during the first 72 hours of limb immobilization.

  2. Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle.

    PubMed

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.

  3. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle

    PubMed Central

    Xu, Peng-Tao; Song, Zhen; Zhang, Wen-Cheng; Jiao, Bo; Yu, Zhi-Bin

    2015-01-01

    Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats. PMID:25713812

  4. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.

    PubMed

    Xu, Peng-Tao; Li, Quan; Sheng, Juan-Juan; Chang, Hui; Song, Zhen; Yu, Zhi-Bin

    2012-08-01

    Unloading in spaceflight or long-term bed rest induces to pronounced atrophy of anti-gravity skeletal muscles. Passive stretch partially resists unloading-induced atrophy of skeletal muscle, but the mechanism remains elusive. The aims of this study were to investigate the hypotheses that stretch tension might increase protein level of neuronal nitric oxide synthase (nNOS) in unloaded skeletal muscle, and then nNOS-derived NO alleviated atrophy of skeletal muscle by inhibiting calpain activity. The tail-suspended rats were used to unload rat hindlimbs for 2 weeks, at the same time, left soleus muscle was stretched by applying a plaster cast to fix the ankle at 35° dorsiflexion. Stretch partially resisted atrophy and inhibited the decreased protein level and activity of nNOS in unloaded soleus muscles. Unloading increased frequency of calcium sparks and elevated intracellular resting and caffeine-induced Ca(2+) concentration ([Ca(2+)]i) in unloaded soleus muscle fibers. Stretch reduced frequency of calcium sparks and restored intracellular resting and caffeine-induced Ca(2+) concentration to control levels in unloaded soleus muscle fibers. The increased protein level and activity of calpain as well as the higher degradation of desmin induced by unloading were inhibited by stretch in soleus muscles. In conclusion, these results suggest that stretch can preserve the stability of sarcoplasmic reticulum Ca(2+) release channels which prevents the elevated [Ca(2+)]i by means of keeping nNOS activity, and then the enhanced protein level and activity of calpain return to control levels in unloaded soleus muscles. Therefore, stretch can resist in part atrophy of unloaded soleus muscles.

  5. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat.

    PubMed

    Miller, T A; Lesniewski, L A; Muller-Delp, J M; Majors, A K; Scalise, D; Delp, M D

    2001-11-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  6. Hindlimb unloading induces a collagen isoform shift in the soleus muscle of the rat

    NASA Technical Reports Server (NTRS)

    Miller, T. A.; Lesniewski, L. A.; Muller-Delp, J. M.; Majors, A. K.; Scalise, D.; Delp, M. D.

    2001-01-01

    To determine whether hindlimb unloading (HU) alters the extracellular matrix of skeletal muscle, male Sprague-Dawley rats were subjected to 0 (n = 11), 1 (n = 11), 14 (n = 13), or 28 (n = 11) days of unloading. Remodeling of the soleus and plantaris muscles was examined biochemically for collagen abundance via measurement of hydroxyproline, and the percentage of cross-sectional area of collagen was determined histologically with picrosirius red staining. Total hydroxyproline content in the soleus and plantaris muscles was unaltered by HU at any time point. However, the relative proportions of type I collagen in the soleus muscle decreased relative to control (Con) with 14 and 28 days HU (Con 68 +/- 5%; 14 days HU 53 +/- 4%; 28 days HU 53 +/- 7%). Correspondingly, type III collagen increased in soleus muscle with 14 and 28 days HU (Con 32 +/- 5%; 14 days HU 47 +/- 4%; 28 days HU 48 +/- 7%). The proportion of type I muscle fibers in soleus muscle was diminished with HU (Con 96 +/- 2%; 14 days HU 86 +/- 1%; 28 days HU 83 +/- 1%), and the proportion of hybrid type I/IIB fibers increased (Con 0%; 14 days HU 8 +/- 2%; 28 days HU 14 +/- 2%). HU had no effect on the proportion of type I and III collagen or muscle fiber composition in plantaris muscle. The data demonstrate that HU induces a shift in the relative proportion of collagen isoform (type I to III) in the antigravity soleus muscle, which occurs concomitantly with a slow-to-fast myofiber transformation.

  7. [Hindlimb antigravity muscles' reaction in male and female rats to the deficit of functional loading].

    PubMed

    Il'ina-Kakueva, E I

    2002-01-01

    Histological and histomorphometric comparison of the antigravity muscles of rats of both sexes was performed following 30-d unloading of their hind limbs by head-down suspension. It was shown that growth rate of control males was higher as compared to control females. This is attributed to the synergic effects of somatotropin and testosterone on metabolism and growth of males and only somatotropin in females. Load deprivation of the hind limbs inhibited body mass gain in all animals; however, this inhibition was twice as great in males. Increase of the soleus and gastrocnemius in the control males in this experiment was slightly ahead of the muscle mass gain in the females. The histomorphometric investigation of the cross-section area of myofibers did not reveal differences between males and females either in the control or suspension. No difference was found in percent of various types of fibers in the control males and females. In the soleus of the suspended rats, a part of slow fibers had transformed into fast ones without any sex-related particularities. The conclusion was made that despite the significant difference in the hormonal profile, the reaction of males and females to insufficient weight loading of the antigravity muscles was alike.

  8. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning.

    PubMed

    Baldwin, K M; Caiozzo, V J; Haddad, F; Baker, M J; Herrick, R E

    1994-05-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  9. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  10. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    PubMed

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  11. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice

    PubMed Central

    Gambara, Guido; Salanova, Michele; Ciciliot, Stefano; Furlan, Sandra; Gutsmann, Martina; Schiffl, Gudrun; Ungethuem, Ute; Volpe, Pompeo; Gunga, Hanns-Christian; Blottner, Dieter

    2017-01-01

    Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight. PMID:28076365

  12. Conduction velocity of antigravity muscle action potentials.

    PubMed

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  13. Intramuscular pressures in antigravity muscles using gravity-independent, pneumatic hardware.

    PubMed

    Macias, Brandon R; Minocha, Ranjeet; Cutuk, Adnan A; Hill, James; Shiau, Jonathon; Hargens, Alan R

    2008-08-01

    Resistive exercise helps prevent muscle atrophy in microgravity, but better exercise equipment is needed. Therefore, the purpose of this study was to determine if a pneumatic, gravity-independent leg-press device (LPD) provides sufficient force to leg musculature. We hypothesized that intramuscular pressure (IMP), a quantitative index of muscle force, is greater in the antigravity superficial posterior and deep posterior compartments than in the non-antigravity anterior compartment during bilateral leg-press exercise. Millar pressure transducers were inserted into the anterior, lateral, superficial posterior, and deep posterior muscle compartments of the left leg of eight healthy subjects (three women, five men). Subjects were supine on the Keiser SX-1, a pneumatic LPD. Then maximal voluntary contraction (MVC) was determined; each subject performed three consecutive voluntary contractions at approximately 18%, 50%, and 100% MVC while continuously measuring IMP. Repeated measures ANOVA were used to determine differences of IMPs between compartments and loads. The magnitudes of IMP (mean +/- SEM) at 18 - 3% (abbreviated approximately 18%), 50%, and 100% MVC in the superficial and deep posterior compartments were significantly greater than that in the anterior compartment during exercise (P < 0.05). Additionally, IMPs in all four compartments significantly rose as resistance increased at approximately 18%, 50%, and 100% MVC (P < 0.05). The LPD provides significantly increased resistance to all four compartments, but with greater loading of the antigravity compartments as compared to the non-antigravity compartment. Since antigravity muscles of the leg are contained primarily in the superficial and deep posterior compartments, the LPD may help prevent muscle atrophy associated with microgravity.

  14. Biochemical response to chronic shortening in unloaded soleus muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Fagan, J. M.; Tischler, M. E.

    1985-01-01

    One leg of tail-casted suspended rats was immobilized in a plantar-flexed position to test whether chronic shortening of posterior leg muscles affected the metabolic response to unloading. The immobilized plantaris and gastrocnemius muscles of these animals showed approximately 20 percent loss of muscle mass in contrast to simply a slower growth rate with unloading. Loss of mass of the soleus muscle during suspension was not accentuated by chronic shortening. Although protein degradation in the isolated soleus muscle of the plantar-flexed limb was slightly faster than in the contralateral free limb, this difference was offset by faster synthesis of the myofibrillar protein fraction of the chronically shortened muscle. Total adenine nucleotides were 17 percent lower (P less than 0.005) in the chronically shortened soleus muscle following incubation. Glutamate, glutamine, and alanine metabolism showed little response to chronic shortening. These results suggest that, in the soleus muscle, chronic shortening did not alter significantly the metabolic responses to unloading and reduced activity.

  15. Influence of suspension hypokinesia on rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Glasberg, M.; Silver, C. J.; Silver, P.; Demartino, G.; Leconey, T.; Klug, G.; Hagler, H.

    1984-01-01

    Hindlimb hypokinesia was induced in rats by the Morey method to characterize the response of the soleus muscle. Rats suspended for 1-4 wk exhibited continuous and significant declines in soleus mass, function, and contractile duration. Soleus speeding was in part explained by an alteration in fiber type. The normal incidence of 70-90 percent type I fibers in the soleus muscle was reduced after 4 wk of suspension to 50 percent or less in 9 of 11 rats. A significant decline in type I myosin isozyme content occurred without a change in that of type II. Other observed histochemical changes were characteristic of denervation. Consistent with soleus atrophy, there was a significant increase in lysosomal (acid) protease activity. One week of recovery after a 2-wk suspension was characterized by a return to values not significantly different from control for muscle wet weights, peak contraction force, one-half relaxation time, and type I myosin. Persistent differences from control were observed in maximal rate of tension development, contraction time, and denervation-like changes.

  16. Comparative morphometry of fibers and capillaries in soleus following weightlessness (SL-3) and suspension

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Fell, R. D.; Dombrowski, M. J.

    1988-01-01

    This work is a continuation of efforts to assess responses of rat skeletal muscle to weightlessness (W) and earthside laboratory experiments with unloading of hind limbs. The soleus is a slow-twitch, load-bearing (antigravity) muscle. Both exposure to W and to the hypokinesia/hypodynamia of whole-body suspension (WBS) results in soleus atrophy. Cross-sectional areas of both slow- and fast-twitch fibers decrease during 7 days of W or 7 or 14 days of WBS. Density and area changes tended to reverse to control levels during 7 days of recovery (R) following WBS. Capillary density was increased with 7 days of W or 7 or 14 days of WBS. During 7 days of R the capillary density returned toward control levels. In summary, the reduction in fiber cross-sectional areas and the increase in fiber and capillary densities support the hypothesis that in both W and WBS there is a loss in soleus muscle cell mass and not in fiber numbers.

  17. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence.

    PubMed

    Derave, Wim; Eijnde, Bert O; Ramaekers, Monique; Hespel, Peter

    2005-07-01

    Animal models are valuable research tools towards effective prevention of sarcopenia and towards a better understanding of the mechanisms underlying skeletal muscle aging. We investigated whether senescence-accelerated mouse (SAM) strains provide valid models for skeletal muscle aging studies. Male senescence-prone mice SAMP6 and SAMP8 were studied at age 10, 25 and 60 weeks and compared with senescence-resistant strain, SAMR1. Soleus and EDL muscles were tested for in vitro contractile properties, phosphocreatine content, muscle mass and fiber-type distribution. Declined muscle mass and contractility were observed at 60 weeks, the differences being more pronounced in SAMP8 than SAMP6 and more pronounced in soleus than EDL. Likewise, age-related decreases in muscle phosphocreatine content and type-II fiber size were most pronounced in SAMP8 soleus. In conclusion, typical features of muscular senescence occur at relatively young age in SAMP8 and nearly twice as fast as compared with other models. We suggest that soleus muscles of SAMP8 mice provide a cost-effective model for muscular aging studies.

  18. Effect of spaceflight on the maximal shortening velocity, morphology, and enzyme profile of fast- and slow-twitch skeletal muscle fibers in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; De La Cruz, L.; Widrick, J. J.; Desplanches, D.

    2000-01-01

    Weightlessness has been shown to cause limb muscle wasting and a reduced peak force and power in the antigravity soleus muscle. Despite a reduced peak power, Caiozzo et al. observed an increased maximal shortening velocity in the rat soleus muscle following a 14-day space flight. The major purpose of the present investigation was to determine if weightlessness induced an elevated velocity in the antigravity slow type I fibers of the rhesus monkey (Macaca mulatta), as well as to establish a cellular mechanism for the effect. Spaceflight or models of weightlessness have been shown to increase glucose uptake, elevate muscle glycogen content, and increase fatigability of the soleus muscle. The latter appears to be in part caused by a reduced ability of the slow oxidative fibers to oxidize fats. A second goal of this study was to establish the extent to which weightlessness altered the substrate profile and glycolytic and oxidative enzyme capacity of individual slow- and fast-twitch fibers.

  19. Three-dimensional architecture of the whole human soleus muscle in vivo

    PubMed Central

    Finni, Taija; D’Souza, Arkiev; Eguchi, Junya; Clarke, Elizabeth C.; Herbert, Robert D.

    2018-01-01

    Background Most data on the architecture of the human soleus muscle have been obtained from cadaveric dissection or two-dimensional ultrasound imaging. We present the first comprehensive, quantitative study on the three-dimensional anatomy of the human soleus muscle in vivo using diffusion tensor imaging (DTI) techniques. Methods We report three-dimensional fascicle lengths, pennation angles, fascicle curvatures, physiological cross-sectional areas and volumes in four compartments of the soleus at ankle joint angles of 69 ± 12° (plantarflexion, short muscle length; average ± SD across subjects) and 108 ± 7° (dorsiflexion, long muscle length) of six healthy young adults. Microdissection and three-dimensional digitisation on two cadaveric muscles corroborated the compartmentalised structure of the soleus, and confirmed the validity of DTI-based muscle fascicle reconstructions. Results The posterior compartments of the soleus comprised 80 ± 5% of the total muscle volume (356 ± 58 cm3). At the short muscle length, the average fascicle length, pennation angle and curvature was 37 ± 8 mm, 31 ± 3° and 17 ± 4 /m, respectively. We did not find differences in fascicle lengths between compartments. However, pennation angles were on average 12° larger (p < 0.01) in the posterior compartments than in the anterior compartments. For every centimetre that the muscle-tendon unit lengthened, fascicle lengths increased by 3.7 ± 0.8 mm, pennation angles decreased by −3.2 ± 0.9° and curvatures decreased by −2.7 ± 0.8 /m. Fascicles in the posterior compartments rotated almost twice as much as in the anterior compartments during passive lengthening. Discussion The homogeneity in fascicle lengths and inhomogeneity in pennation angles of the soleus may indicate a functionally different role for the anterior and posterior compartments. The data and techniques presented here demonstrate how DTI can be used to obtain detailed, quantitative measurements of the

  20. Effects of long-duration bed rest on structural compartments of m. soleus in man

    NASA Technical Reports Server (NTRS)

    Belozerova, I.; Shenkman, B.; Mazin, M.; Leblanc, A.; LeBlanc, A. D. (Principal Investigator)

    2001-01-01

    Magnetic resonance imaging (MRI), histomorphometry and electron microscopy of muscle demonstrate that long-term exposure to actual or simulated weightlessness (including head down bed rest) leads to decreased volume of antigravity muscles in mammals. In muscles interbundle space is occupied by the connective tissue. Rat studies show that hindlimb unloading induces muscle fiber atrophy along with increase in muscle non-fiber connective tissue compartment. Beside that, usually 20% of the muscle fiber volume is comprised by non-contractile (non-myofibrillar) compartment. The aim of the present study was to compare changes in muscle volume, and in muscle fiber size with alterations in myofibrillar apparatus, and in connective tissue compartment in human m. soleus under conditions of 120 day long head down bed rest (HDBR).

  1. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  2. Differential Responses of Soleus and Plantaris Muscle Fibers to Overloading

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Shibaguchi, Tsubasa; Ohira, Takashi; Nakai, Naoya; Ohira, Yoshinobu

    2013-02-01

    Responses of slow and fast fibers in soleus and plantaris muscles of adult rats to overloading by the tendon transection of synergists were studied. Overloading-related hypertrophy was noted in the slow fibers of plantaris and soleus, although the magnitude was greater in plantaris. Five genes with minor expression in slow soleus muscle were identified by microarray analysis. Base-line expressions of these genes in slow fibers of plantaris were also low. Further, repressive effects of overloading on these genes were seen in some fast fibers of plantaris, not in whole plantaris and soleus. The data suggested that the repression of particular genes might be related to the pronounced morphological response of fibers expressing type II, including I+II, myosin heavy chain (MyHC), although these genes with lower base-line expression in slow fibers did not respond to overloading.

  3. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  4. Reinnervation of the lateral gastrocnemius and soleus muscles in the rat by their common nerve.

    PubMed Central

    Gillespie, M J; Gordon, T; Murphy, P R

    1986-01-01

    To determine whether there is any specificity of regenerating nerves for their original muscles, the common lateral gastrocnemius soleus nerve (l.g.s.) innervating the fast-twitch lateral gastrocnemius (l.g.) and slow-twitch soleus muscles was sectioned in the hind limb of twenty adult rats. The proximal nerve stump was sutured to the dorsal surface of the l.g. muscle and 4-14 months later, the contractile properties of the reinnervated l.g. and soleus muscles and their single motor units were studied by dissection and stimulation of the ventral root filaments. Contractile properties of normal contralateral muscles were examined for comparison and motor units were isolated in l.g. and soleus muscles for study in a group of untreated animals. Measurement of time and rate parameters of maximal twitch and tetanic contractions showed that the rate of development of force increased significantly in reinnervated soleus muscles and approached the speed of l.g. muscles but rate of relaxation did not change appreciably. In reinnervated l.g. muscles, contraction speed was similar to normal l.g. muscles but relaxation rate declined toward the rates of relaxation in control soleus muscles. After reinnervation by the common l.g.s. nerve, the proportion of slow motor units in l.g. increased from 10 to 31% and decreased in soleus from 80 to 31%. The relative proportions of fast and slow motor units in each muscle were the same as the proportions of fast and slow units in the normal l.g. and soleus muscles combined. It was concluded that fast and slow muscles do not show any preference for their former nerves and that the change in the force profile of the reinnervated muscles is indicative of the relative proportions of fast and slow motor units: fast units dominate the contraction phase and slow units the relaxation phase of twitch and tetanic contractions of the muscle. PMID:3723414

  5. Return to Play After Soleus Muscle Injuries.

    PubMed

    Pedret, Carles; Rodas, Gil; Balius, Ramon; Capdevila, Lluis; Bossy, Mireia; Vernooij, Robin W M; Alomar, Xavier

    2015-07-01

    Soleus muscle injuries are common in different sports disciplines. The time required for recovery is often difficult to predict, and reinjury is common. The length of recovery time might be influenced by different variables, such as the involved part of the muscle. Injuries in the central aponeurosis have a worse prognosis than injuries of the lateral or medial aponeurosis as well as myofascial injuries. Case series; Level of evidence, 4. A total of 61 high-level or professional athletes from several sports disciplines (soccer, tennis, track and field, basketball, triathlon, and field hockey) were reviewed prospectively to determine the recovery time for soleus muscle injuries. Clinical and magnetic resonance imaging evaluation was performed on 44 soleus muscle injuries. The association between the different characteristics of the 5 typical muscle sites, including the anterior and posterior myofascial and the lateral, central, and medial aponeurosis disruption, as well as the injury recovery time, were determined. Recovery time was correlated with age, sport, extent of edema, volume, cross-sectional area, and retraction extension or gap. Of the 44 patients with muscle injuries who were analyzed, there were 32 (72.7%) strains affecting the myotendinous junction (MT) and 12 (23.7%) strains of the myofascial junction. There were 13 injuries involving the myotendinous medial (MTM), 7 affecting the MT central (MTC), 12 the MT lateral (MTL), 8 the myofascial anterior (MFA), and 4 the myofascial posterior (MFP). The median recovery time (±SD) for all injuries was 29.1 ± 18.8 days. There were no statistically significant differences between the myotendinous and myofascial injuries regarding recovery time. The site with the worst prognosis was the MTC aponeurosis, with a mean recovery time of 44.3 ± 23.0 days. The site with the best prognosis was the MTL, with a mean recovery time of 19.2 ± 13.5 days (P < .05). There was a statistically significant correlation between

  6. Return to Play After Soleus Muscle Injuries

    PubMed Central

    Pedret, Carles; Rodas, Gil; Balius, Ramon; Capdevila, Lluis; Bossy, Mireia; Vernooij, Robin W.M.; Alomar, Xavier

    2015-01-01

    Background Soleus muscle injuries are common in different sports disciplines. The time required for recovery is often difficult to predict, and reinjury is common. The length of recovery time might be influenced by different variables, such as the involved part of the muscle. Hypothesis Injuries in the central aponeurosis have a worse prognosis than injuries of the lateral or medial aponeurosis as well as myofascial injuries. Study Design Case series; Level of evidence, 4. Methods A total of 61 high-level or professional athletes from several sports disciplines (soccer, tennis, track and field, basketball, triathlon, and field hockey) were reviewed prospectively to determine the recovery time for soleus muscle injuries. Clinical and magnetic resonance imaging evaluation was performed on 44 soleus muscle injuries. The association between the different characteristics of the 5 typical muscle sites, including the anterior and posterior myofascial and the lateral, central, and medial aponeurosis disruption, as well as the injury recovery time, were determined. Recovery time was correlated with age, sport, extent of edema, volume, cross-sectional area, and retraction extension or gap. Results Of the 44 patients with muscle injuries who were analyzed, there were 32 (72.7%) strains affecting the myotendinous junction (MT) and 12 (23.7%) strains of the myofascial junction. There were 13 injuries involving the myotendinous medial (MTM), 7 affecting the MT central (MTC), 12 the MT lateral (MTL), 8 the myofascial anterior (MFA), and 4 the myofascial posterior (MFP). The median recovery time (±SD) for all injuries was 29.1 ± 18.8 days. There were no statistically significant differences between the myotendinous and myofascial injuries regarding recovery time. The site with the worst prognosis was the MTC aponeurosis, with a mean recovery time of 44.3 ± 23.0 days. The site with the best prognosis was the MTL, with a mean recovery time of 19.2 ± 13.5 days (P < .05). There

  7. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  8. Investigations of the Effects of Altered Vestibular System Function on Hindlimb Anti-Gravity Muscles

    NASA Technical Reports Server (NTRS)

    Lowery, Mary Sue

    1998-01-01

    Exposure to different gravitational environments, both the microgravity of spaceflight and the hypergravity of centrifugation, result in altered vestibulo-spinal function which can be reversed by reacclimation to earth gravity (2). Control of orientation, posture, and locomotion are functions of the vestibular system which are altered by changes in gravitational environment. Not only is the vestibular system involved with coordination and proprioception, but the gravity sensing portion of the vestibular system also plays a major role in maintaining muscle tone through projections to spinal cord motoneurons that control anti-gravity muscles. I have been involved with investigations of several aspects of the link between vestibular inputs and muscle morphology and function during my work with Dr. Nancy Daunton this summer and the previous summer. We have prepared a manuscript for submission (4) to Aviation, Space, and Environmental Medicine based on work that I performed last summer in Dr. Daunton's lab. Techniques developed for that project will be utilized in subsequent experiments begun in the summer of 1998. I have been involved with the development of a pilot project to test the effects of vestibular galvanic stimulation (VGS) on anti-gravity muscles and in another project testing the effects of the ototoxic drug streptomycin on the otolith-spinal reflex and anti-gravity muscle morphology.

  9. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  10. Changes in recruitment of Rhesus soleus and gastrocnemius muscles following a 14 day spaceflight

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Bodine-Fowler, S. C.; Roy, R. R.; De Leon, R. D.; De Guzman, C. P.; Koslovskaia, I.; Sirota, M.; Edgerton, V. R.

    1991-01-01

    The effect of microgravity on the recruitment patterns of the soleus, gastrocnemius, and tibialis-anterior muscles was investigated by comparing electromyograms (EMGs) of these muscles of Rhesus monkeys implanted with EMG electrodes, taken before and after a 14-day flight on board Cosmos 2044. It was found that the EMG amplitude values in the soleus muscle decreased after the spaceflight but returned to normal values over the 2-wk recovery period. The medial amplitudes of gastrocnemius and tibialis anterior were not changed by flight. Joint probability density distributions displayed changes after flight in both the soleus and gastrocnemius muscles, but not in tibialis anterior.

  11. Possible mechanism for changes in glycogen metabolism in unloaded soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.

    1985-01-01

    Carbohydrate metabolism has been shown to be affected in a number of ways by different models of hypokinesia. In vivo glycogen levels in the soleus muscle are known to be increased by short-term denervation and harness suspension. In addition, exposure to 7 days of hypogravity also caused a dramatic increase in glycogen concentration in this muscle. The biochemical alterations caused by unloading that may bring about these increases in glycogen storage in the soleus were sought.

  12. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  13. Effect of recovery mode following hind-limb suspension on soleus muscle composition in the rat

    NASA Technical Reports Server (NTRS)

    McNulty, A. L.; Otto, A. J.; Kasper, C. E.; Thomas, D. P.

    1992-01-01

    The purpose of this study was to compare the effects of two different recovery modes from hind-limb suspension-induced hypodynamia on whole body and muscle (soleus) growth as well as soleus composition and size changes of different fiber types within this same muscle. Following 28 days of tail-suspension, rats were returned to their cages and sedentarily recovered (HS), or were exercised by running on a treadmill 5 days/wk, at progressively increasing workloads (HR) for one month. Sedentary and running control groups of animals (CS, CR) were also evaluated for comparative purposes. The exercise program, which was identical for CR and HR groups, had no effect on body wt., soleus wt., soleus muscle composition or fiber size in CR rats. Atrophied soleus muscle and reduced soleus wt./body wt. ratio (both 60% of control) had returned to control values by day 7 of recovery in both suspended groups despite the fact that whole body wt. gain was significantly reduced (p less than 0.05) in HR as compared to HS rats. Atrophied soleus Type I fiber mean cross-sectional area in both HR and HS groups demonstrated similar and significant (p less than 0.01) increases during recovery. Increases in Type IIa and IIc fiber area during this same period were significant only in the HR group. While the percentage area of muscle composed of Type I fibers increased in both hypodynamic groups during recovery, the reduction in area percentage of muscle made up of Type IIa fibers was again only significant in the HR group.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. [Effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization].

    PubMed

    Zhao, Xue-hong; Fan, Xiao-li; Song, Xin-ai; Shi, Lei

    2011-09-01

    To investigate the effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization. The immobilization of rat soleus muscle was induced as a disuse muscle model, and 100 Hz sinusoidal vibration was generated by a vibrator and applied to the immobilized soleus muscle, then the changes of H reflex and M wave in muscle were observed after 14 d. Compared to control, after 14 d of immobilization M(max) in soleus muscle decreased (P<0.01), stimulus threshold and S(max) increased (P<0.01); Hmax and H(max)/M(max) decreased (P<0.05, S(max) increased (P<0.05). Compared to immobilized soleus muscle, after 14 d of immobilization with 100 Hz sinusoidal vibration, the M(max) increased(P<0.01), stimulus threshold and S(Mmax) decreased (P<0.05), H(max) (P<0.01) increased and H(max)/M(max) increased (P<0.05). 100 Hz sinusoidal vibration plays a significant antagonist role against the changes in H reflex and M wave in rat soleus muscle following immobilization.

  15. F response and H reflex analysis of physiological unity of gravity and antigravity muscles in man.

    PubMed

    García, H A; Fisher, M A

    1977-01-01

    Observational differences between reflex (H reflex) and antidromic (F response) activation of segmental motoneurons by a peripheral electrical stimulus are described. In contrast to H reflexes, the percentage of F responses found after a series of stimuli is directly related to the pick-up field of the recording electrode consistent with this response being due to the variable activation of a small fraction of the available motoneuron pool. Despite the differing physiological mechanisms, both F responses and H reflexes can be used to demonstrate similar relative "central excitatory states" for antigravity muscles (i.e. extensors in the lower extremity and flexors in the upper extremity) and their antagonist gravity muscles. H reflexes were elicited not only in their usual location in certain antigravity muscles but also in unusual locations by length/tension changes in agonist and antagonist groups as well as by passive stretch. The data argue for the physiological unity of similarly acting gravity and antigravity muscles as well as supporting a meaningful role of group II afferents in normal segmental motoneuron pool excitability.

  16. The effect of muscle excursion on muscle recovery after tendon repair in a neglected tendon injury: a study in rabbit soleus muscles.

    PubMed

    Jeon, Suk Ha; Chung, Moon Sang; Baek, Goo Hyun; Lee, Young Ho; Gong, Hyun Sik

    2011-01-01

    We attempted to determine whether muscle excursion observed during operation can be a prognostic indicator of muscle recovery after delayed tendon repair in a rabbit soleus model. Eighteen rabbits underwent tenotomy of the soleus muscles bilaterally and were divided into three groups according to the period from tenotomy to repair. The tendons of each group were repaired 2, 4, and 6 weeks after tenotomy. The excursion of each soleus muscle was measured at the time of tenotomy (baseline), at 2, 4, 6 weeks after tenotomy, and 8 weeks after tendon repair. The amount of muscle recovery after tendon repair in terms of muscle excursion independently depended on the timing of repair and on the muscle excursion observed during repair. The regression model predicted that the muscle excursion recovered on average by 0.6% as the muscle excursion at the time of repair increased by 1% after adjusting for the timing of repair. This study suggests that measuring the muscle excursion during tendon repair may help physicians estimate the potential of muscle recovery in cases of delayed tendon repair. Copyright © 2010 Orthopaedic Research Society.

  17. Soleus muscle H-reflex monitoring in endoscopic surgery under general anesthesia percutaneous interlaminar approach.

    PubMed

    Wang, Huixue; Gao, Yingji; Ji, Lixin; Bai, Wanshan

    2018-05-01

    The clinical value of soleus muscle H-reflex monitoring in general anesthesia percutaneous interlaminar approach was investigated. A total of 80 cases with unilateral L5-S1 disc herniation between January 2015 and October 2016 were randomly divided into control group (without soleus muscle H-reflex monitoring, n=40) and observation group (with soleus muscle H-reflex monitoring, n=40). Results showed that the operation time of the observation group was shorter than that of the control group (P<0.05), and the blood loss during the operation was less than that of the control group (P<0.05). The length of postoperative hospital stay was shorter than that of the control group (P<0.05). At 24 h after operation, the amplitude of H-reflex in diseased side soleus muscle was significantly lower than that in healthy side (P<0.05). The preoperative, postoperative and 24 h postoperatively, the latency of H-reflex in diseased side soleus muscle was shorter than that of healthy side (P<0.05). The latency and amplitude of H-reflex latency in soleus muscle were significantly lower (P<0.05), and the height of intervertebral space in observation group was significantly higher than that in control group (P<0.05). The total percentage of postsurgical sensory dysfunction, dyskinesia, post-root canal stenosis, disc herniation and cerebrospinal fluid leakage was lower than that of the control group (P<0.05). Japanese Orthopaedic Association score of the observation group was significantly higher at 1 month, and 1 year after operation lower than the control group (P<0.05). Taken together, soleus muscle H-reflex monitoring can effectively reduce the damage to the nerve roots under percutaneous endoscopic intervertebral endoscopic surgery under general anesthesia, improve the accuracy of surgery, reduce the complications, shorten the operation time and reduce the surgical bleeding, which is more beneficial to patients smooth recovery.

  18. Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days

    NASA Technical Reports Server (NTRS)

    Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.

    1998-01-01

    The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.

  19. Effect of salbutamol on innervated and denervated rat soleus muscle.

    PubMed

    Soić-Vranić, T; Bobinac, D; Bajek, S; Jerković, R; Malnar-Dragojević, D; Nikolić, M

    2005-12-01

    The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a beta2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other beta2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  20. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  1. Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Wenke, J. C.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    2001-01-01

    BACKGROUND: Exposure to reduced gravitational forces during spaceflight is associated with significant reductions in skeletal muscle mass and strength. The purpose of this study was to test the hypothesis that increases in resting cytosolic free calcium concentration ([Ca2+]i) would precede reductions in protein content and maximal isometric tetanic force (Po) in mouse soleus muscle after initiation of hindlimb suspension. METHODS: Female ICR mice (n = 42) were hindlimb suspended for 1, 2, 3, 5, or 7 d; weight-matched mice were used as controls. Following the hindlimb suspension, the left soleus muscle was used to determine Po in vitro and the right soleus muscle was used to determine protein content and [Ca2+]i via confocal laser scanning microscopy. RESULTS: Compared with controls, [Ca2+]i was elevated by 38% at 2 d, and 117% at 7 d. Compared with controls, soleus muscle total and myofibrillar protein contents were reduced 27-29% and 30-34%, respectively, at 5-7 d after initiation of hindlimb suspension. Compared with controls, soleus muscle Po was decreased by 24% at 3 d, and 38% at 7 d. CONCLUSION: It appears that resting cytosolic Ca2+ homeostasis is disturbed soon after the initiation of hindlimb suspension, and these elevations in [Ca2+]i may play a role in initiating soleus muscle atrophy.

  2. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1997-05-01

    With hemiplegia following stroke, a person's movement response to anti-gravity posture often appears rigid and inflexible, exacerbating the motor dysfunction. A major determinant of pathological movement in anti-gravity postures is the failure to adapt muscle-activity patterns automatically to changes in posture. The aim of the present study was to determine whether the impaired motor performance observed when persons with hemiplegia pedal in a horizontal position is exacerbated at more vertical anti-gravity body orientations. Twelve healthy elderly subjects and 17 subjects with chronic (> 6 months) post-stroke hemiplegia participated in the study. Subjects pedalled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload, cadence, and hip and knee kinematics. Pedal reaction forces, and crank and pedal kinematics, were measured and then used to calculate the work done by each leg and their net positive and negative components. The EMG was recorded from four leg muscles (tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris). The main result from this study was that impaired plegic leg performance, as measured by net negative work done by the plegic leg and abnormal early rectus femoris activity, was exacerbated at the most vertical body orientations. However, contrary to the belief that muscle activity cannot adapt to anti-gravity postures, net positive work increased appropriately and EMG activity in all muscles showed modulated levels of activity similar to those in elderly control subjects. These results support the hypothesis that increased verticality exacerbates the already impaired movement performance. Yet, much of the motor response to verticality was flexible and appropriate, given the mechanics of the task.

  3. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  4. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    PubMed

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P < 0.05) and relative displacement of aponeuroses was smaller than during passive stretch (P < 0.05). Soleus fascicle length changes did not differ between passive and active stretches but LG fascicles stretched less in the active than passive condition when the stretch began at angles of 70° and 90° of knee flexion (P < 0.05). The activity-induced decrease in the relative displacement of SOL and LG suggests stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  6. Impact of weightlessness on muscle function

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Slentz, M.

    1995-01-01

    The most studied skeletal muscles which depend on gravity, "antigravity" muscles, are located in the posterior portion of the legs. Antigravity muscles are characterized generally by a different fiber type composition than those which are considered nonpostural. The gravity-dependent function of the antigravity muscles makes them particularly sensitive to weightlessness (unweighting) resulting in a substantial loss of muscle protein, with a relatively greater loss of myofibrillar (structural) proteins. Accordingly alpha-actin mRNA decreases in muscle of rats exposed to microgravity. In the legs, the soleus seems particularly responsive to the lack of weight-bearing associated with space flight. The loss of muscle protein leads to a decreased cross-sectional area of muscle fibers, particularly of the slow-twitch, oxidative (SO) ones compared to fast-twitch glycolytic (FG) or oxidative-glycolytic (FOG) fibers. In some muscles, a shift in fiber composition from SO to FOG has been reported in the adaptation to spaceflight. Changes in muscle composition with spaceflight have been associated with decreased maximal isometric tension (Po) and increased maximal shortening velocity. In terms of fuel metabolism, results varied depending on the pathway considered. Glucose uptake, in the presence of insulin, and activities of glycolytic enzymes are increased by space flight. In contrast, oxidation of fatty acids may be diminished. Oxidation of pyruvate, activity of the citric acid cycle, and ketone metabolism in muscle seem to be unaffected by microgravity.

  7. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  8. Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; Desaphy, Jean-François; Camerino, Diana Conte; Frigeri, Antonio; Svelto, Maria

    2010-12-01

    Muscle atrophy occurring in several pathophysiological conditions determines decreases in muscle protein synthesis, increases in the rate of proteolysis and changes in muscle fiber composition. To determine the effect of muscle atrophy induced by hindlimb unloading (HU) on membrane proteins from rat soleus, a proteomic approach based on two-dimensional Blue Native/SDS-PAGE was performed. Proteomic analysis of normal and HU soleus muscle demonstrates statistically significant changes in the relative level of 36 proteins. Among the proteins identified by mass spectrometry, most are involved in pathways associated with muscle fuel utilization, indicating a shift in metabolism from oxidative to glycolytic. Moreover, immunoblotting analysis revealed an increase in aquaporin-4 (AQP4) water channel and an alteration of proteins belonging to the dystrophin-glycoprotein complex (DGC). AQP4 and DGC are regulated in soleus muscle subjected to simulated microgravity in response to compensatory mechanisms induced by muscle atrophy, and they parallel the slow-to-fast twitch conversion that occurs in soleus fibers during HU. In conclusion, the alterations of soleus muscle membrane proteome may play a pivotal role in the mechanisms involved in disuse-induced muscle atrophy.

  9. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training

    PubMed Central

    Shields, Richard K.; Dudley-Javoroski, Shauna; Littmann, Andrew E.

    2012-01-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI. PMID:16575026

  10. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training.

    PubMed

    Shields, Richard K; Dudley-Javoroski, Shauna; Littmann, Andrew E

    2006-08-01

    Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.

  11. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Rodnick, Kenneth J.; Mondon, Carl E.; James, David E.; Holloszy, John O.

    1991-01-01

    The study is intended to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). Results obtained indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. It is concluded that muscle activity is an important factor in the regulation of the GLUT-4 expression in skeletal muscle.

  12. Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    PubMed Central

    Camerino, Giulia M.; Bianchini, Elisa; Ciciliot, Stefano; Danieli-Betto, Daniela; Dobrowolny, Gabriella; Furlan, Sandra; Germinario, Elena; Goto, Katsumasa; Gutsmann, Martina; Kawano, Fuminori; Nakai, Naoya; Ohira, Takashi; Ohno, Yoshitaka; Picard, Anne; Salanova, Michele; Schiffl, Gudrun; Blottner, Dieter; Musarò, Antonio; Ohira, Yoshinobu; Betto, Romeo; Conte, Diana; Schiaffino, Stefano

    2012-01-01

    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures. PMID:22470446

  13. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    PubMed

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P < 0.05 vs. before bed rest) and reduced the maximal voluntary force of plantar flexion by 15%. In contrast, bed rest did not alter the increase in MSNA response to fatiguing handgrip and had no effects on the maximal voluntary force of handgrip. Although PEMI sustained MSNA activation before bed rest in all trials, bed rest entirely eliminated the PEMI-induced increase in MSNA in leg exercises but partially attenuated it in forearm exercises. These results do not support our hypothesis but indicate that bed rest causes a reduction in isometric exercise-induced sympathetic activation in (probably atrophied) antigravity leg muscles.

  14. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  15. Overexpression of IGF-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse

    PubMed Central

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E.; Walter, Glenn A.; Sweeney, H. Lee; Vandenborne, Krista

    2014-01-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Since insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of viral mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for two weeks to induce muscle atrophy in the soleus and ankle plantar flexor muscle group. Subsequently, the mice were allowed to reambulate and muscle damage and recovery was monitored over a period of 2 to 21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by MRI, a nonspecific marker of muscle damage, was significantly lower in IGF-1 injected, compared to contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1 injected soleus muscles was confirmed on histology, with a lower fraction area of abnormal muscle tissue in IGF-I injected muscles at 2 days reambulation (33.2±3.3%vs 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days), and elevated MyoD mRNA (7-fold at 2 days) in IGF-1 injected limbs (P<0.05). These findings demonstrate a potential role of IGF-1 in protecting unloaded

  16. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    PubMed

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  17. Heat Shock Transcription Factor 1-Deficiency Attenuates Overloading-Associated Hypertrophy of Mouse Soleus Muscle

    PubMed Central

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy. PMID:24167582

  18. Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus.

    PubMed

    Wick, Carolin; Böl, Markus; Müller, Florian; Blickhan, Reinhard; Siebert, Tobias

    2018-07-01

    Isolated and packed muscles (e.g. in the calf) exhibit different three-dimensional muscle shapes. In packed muscles, cross-sections are more angular compared to the more elliptical ones in isolated muscles. As far as we know, it has not been examined yet, whether the shape of the muscle in its packed condition influences its internal arrangement of muscle fascicles and accordingly the contraction behavior in comparison to the isolated condition. To evaluate the impact of muscle packing, we examined the three-dimensional muscle architecture of isolated and packed rabbit M. soleus for different ankle angles (65°, 75°, 85°, 90°, and 95°) using manual digitization (MicroScribe ® MLX). In general, significantly increased values of pennation angle and fascicle curvature were found in packed compared to isolated M. soleus (except for fascicle curvature at 90° ankle angle). On average, fascicle length of isolated muscles exceeded fascicle lengths of packed muscles by 2.6%. Reduction of pennation angle in the packed condition had only marginal influence on force generation (about 1% of maximum isometric force) in longitudinal direction (along the line of action) although an increase of transversal force component (perpendicular to the line of action) of about 26% is expected. Results of this study provide initial evidence that muscle packing limits maximum muscle performance observed in isolated M. soleus. Besides an enhanced understanding of the impact of muscle packing on architectural parameters, the outcomes of this study are essential for realistic three-dimensional muscle modeling and model validation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    PubMed

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role

  20. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  1. Isometric contractions of motor units and immunohistochemistry of mouse soleus muscle.

    PubMed Central

    Lewis, D M; Parry, D J; Rowlerson, A

    1982-01-01

    1. Isometric contractions of motor units, isolated functionally by ventral root splitting in vivo, were recorded from mouse soleus muscle. 2. Motor unit tensions varied over a narrow symmetrical range and averaged 4.7% of whole muscle tension, corresponding to twenty-one motor units per muscle. 3. There was considerable variation between muscles in isometric twitch times-to-peak and even greater variation for the motor units. The distribution of motor unit times-to-peak was apparently unimodal and could be fitted by a single normal population. A slightly better fit was, however, obtained with two normal populations, as suggested by the histochemistry. 4. Twitch time-to-peak decreased in proportion to axonal conduction velocity in individual animals. The whole population of motor units could be fitted by a linear relation between time-to-peak and the reciprocal of conduction time in the motor axon. Motor unit tension was also linearly related to the reciprocal of conduction time. 5. Histochemistry showed clear division between Type I and Type IIa fibres. Type I fibres reacted strongly with antibody against slow myosin of cat soleus muscle; Type IIa gave a reaction no stronger than the background. The division was as clear as in the cat or rat. Images Fig. 2 Plate 1 PMID:7050345

  2. Action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after nerve injury

    PubMed Central

    Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko

    2017-01-01

    ABSTRACT Objective To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Methods Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. Results The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. Conclusion The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. PMID:28767917

  3. Acute effects of stretching exercise on the soleus muscle of female aged rats.

    PubMed

    Zotz, Talita Gnoato; Capriglione, Luiz Guilherme A; Zotz, Rafael; Noronha, Lucia; Viola De Azevedo, Marina Louise; Fiuza Martins, Hilana Rickli; Silveira Gomes, Anna Raquel

    2016-01-01

    It has been shown that stretching exercises can improve the flexibility and independence of the elderly. However, although these exercises commonly constitute training programs, the morphological adaptations induced by stretching exercises in aged skeletal muscle are still unclear. To assess the acute effects of passive mechanical static stretching on the morphology, sarcomerogenesis and modulation of important components of the extracellular matrix of the soleus muscle of aged female rats. Fifteen old female rats with 26 months were divided into two groups: stretching (n=8, SG) and control (n=7, CG): The stretching protocol consisted of 4 repetitions each of 1 min with 30s interval between sets. Stretching was performed on the left soleus muscle, 3 times a week for 1 week. After three sessions, the rats were anesthetized to remove the left soleus muscle, and then euthanized. The following analyses were carried out: muscle fiber cross-sectional area and serial sarcomere number; immunohistochemistry for the quantification of collagen I, III and TGFβ-1. a decrease in muscle fiber cross-sectional area of the SG was observed when compared to the CG (p=0.0001, Kruskal-Wallis); the percentage of type I collagen was significantly lower in the SG when compared to the CG (p=0.01, Kruskal-Wallis), as well as the percentage of TGFβ-1 (p=0.04, Kruskal-Wallis); collagen III was significantly higher in the SG than in the CG (7.06±6.88% vs 4.92±5.30%, p=0.01, Kruskal-Wallis). Although the acute stretching induced muscle hypotrophy, an antifibrotic action was detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry

    PubMed Central

    Chaves, Daniela F. S.; Carvalho, Paulo C.; Lima, Diogo B.; Nicastro, Humberto; Lorenzetti, Fábio M.; Filho, Mário S.; Hirabara, Sandro M.; Alves, Paulo H. M.; Moresco, James J.; Yates, John R.; Lancha, Antonio H.

    2013-01-01

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism, leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. Briefly, we employed tandem mass tags (TMT) to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related, involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers, and most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence (GAS), zero beta-globin, and prolargin. PMID:24001182

  5. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry.

    PubMed

    Chaves, Daniela F S; Carvalho, Paulo C; Lima, Diogo B; Nicastro, Humberto; Lorenzeti, Fábio M; Siqueira-Filho, Mário; Hirabara, Sandro M; Alves, Paulo H M; Moresco, James J; Yates, John R; Lancha, Antonio H

    2013-10-04

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.

  6. Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies

    PubMed Central

    Siebert, Tobias; Leichsenring, Kay; Rode, Christian; Wick, Carolin; Stutzig, Norman; Schubert, Harald; Blickhan, Reinhard; Böl, Markus

    2015-01-01

    The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or

  7. Acetylcholinesterase activity in soleus muscle intrafusal and extrafusal fibres in tail suspended rats.

    PubMed

    Tang, Bin; Fan, Xiao-li; Wu, Su-di

    2002-10-01

    Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.

  8. Myotoxic effects of clenbuterol in the rat heart and soleus muscle.

    PubMed

    Burniston, Jatin G; Ng, Yeelan; Clark, William A; Colyer, John; Tan, Lip-Bun; Goldspink, David F

    2002-11-01

    Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.

  9. The Effects of Ligustrazine on the Ca2+ Concentration of Soleus and Gastrocnemius Muscle Fibers in Hindlimb Unloaded Rat

    NASA Astrophysics Data System (ADS)

    Gao, Yunfang; Goswami, Nandu; Du, Bei; Hu, Huanxin; Wu, Xue

    Background Spaceflight or inactivity (bed rest, limb immobilization, hindlimb unloading) causes skeletal muscle atrophy. Recent studies show that an increase in protein degradation is an important mechanism for disuse atrophy. Furthermore, the calcium overload of disuse-atrophied muscle fiber has been shown to initiate the skeletal muscle proteolysis in disuse atrophy. Ligustrazine (tetramethylpyrazine, TMP), one of the important active ingredient extracted from Chuanxiong, has been shown by our group to increase muscle fiber cross-sectional area in atrophied soleus induced by 14 days hindlimb unloading. However, the underlying mechanisms of ligustrazine effects on disuse-atrophied muscle fibers remain unknown. Objective: We investigated the effects of ligustrazine on the cytoplasmic calcium overloading in soleus and gastrocnemius in 14 days hindlimb unloaded (HU) rats. Methods: Adult female Sprague-Dawley rats were matched for body mass and randomly assigned to three groups (n=8, each group): 1) synchronous control (CON); HU + intragastric water instillation (HU+W); HU + intragastric 60.0 mg kg-1 ligustrazine instillation (HU+Tmp). Laser scanning confocal microscope assessed the concentrations of cytoplasmic calcium ions. Spaceflight disuse atrophy was simulated by hindlimb unloading, provided by tail suspension. Results: 1) Compared with CON, the concentration of soleus intracellular calcium ion in HU+W and HU+Tmp increased 330% and 86% respectively P<0.01). Compared with HU+W, the concentration of soleus intracellular calcium ion in HU+Tmp decreased by 130% P<0.01). 2) Compared with CON, the concentration of gastrocnemius intracellular calcium ion in HU+W and HU+Tmp increased 189.8% and 32.1% respectively P<0.01). Compared with HU+W, the concentration of gastrocnemius intracellular calcium ion in HU+Tmp decreased by 119.3% (P<0.01). Conclusion: After 14 days of hindlimb unloading, cytoplasmic calcium of soleus (slow-twitch muscle) and gastrocnemius (fast

  10. Insulin attenuates atrophy of unweighted soleus muscle by amplified inhibition of protein degradation

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Satarug, S.; Aannestad, A.; Munoz, K. A.; Henriksen, E. J.

    1997-01-01

    Unweighting atrophy of immature soleus muscle occurs rapidly over the first several days, followed by slower atrophy coinciding with increased sensitivity to insulin of in vitro protein metabolism. This study determined whether this increased sensitivity might account for the diminution of atrophy after 3 days of tall-cast hindlimb suspension. The physiological significance of the increased response to insulin in unweighted muscle was evaluated by analyzing in vivo protein metabolism for day 3 (48 to 72 hours) and day 4 (72 to 96 hours) of unweighting in diabetic animals either injected with insulin or not treated. Soleus from nontreated diabetic animals showed a similar loss of protein during day 3 (-16.2%) and day 4 (-14.5%) of unweighting, whereas muscle from insulin-treated animals showed rapid atrophy (-14.5%) during day 3 only, declining to just -3.1% the next day. Since fractional protein synthesis was similar for both day 3 (8.6%/d) and day 4 (7.0%/d) of unweighting in insulin-treated animals, the reduction in protein loss must be accounted for by a slowing of protein degradation due to circulating insulin. Intramuscular (IM) injection of insulin (600 nmol/L) stimulated in situ protein synthesis similarly in 4-day unweighted (+56%) and weight-bearing (+90%) soleus, even though unweighted muscle showed a greater in situ response of 2-deoxy-[3H]glucose uptake to IM injection of either insulin (133 nmol/L) or insulin-like growth factor-I (IGF-I) (200 nmol/L) than control muscle. These findings suggest that unweighted muscle is selectively more responsive in vivo to insulin, and that the slower atrophy after 3 days of unweighting was due to an increased effect of insulin on inhibiting protein degradation.

  11. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    PubMed Central

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  13. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    PubMed

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  14. Role(s) of Gravitational Loading on the Growth-Related Transformation of Fiber Phenotype in Rat Soleus

    NASA Astrophysics Data System (ADS)

    Ohira, Yoshinobu; Kawano, Fuminori; Goto, Katsumasa; Terada, Masahiro; Ohira, Takashi; Nakai, Naoya; Higo, Yoko; Yoshioka, Toshitada

    2008-06-01

    Effects of gravitational loading or unloading on the gain of the characteristics in soleus muscle fibers were studied in rats. The tail suspension was performed in newborn rats from the postnatal day 4 to month 3 and the reloading was allowed for 3 months in some rats. Single expression of type I myosin heavy chain (MHC) was observed in ~82% fibers in 3month old controls, but fibers expressing multiple MHC iso-forms were noted in the unloaded rats. Responses of fast or slow MHC protein expression to growth and/or unloading were not directly related to mRNA expression. Although 97% fibers in 3month old controls had a single neuromuscular junction at the central region of fiber, fibers with multiple nerve endplates were seen in the unloaded group. Faster contraction speed and lower maximal tension development, even after normalization with fiber size, were observed in the unloaded pure type I MHC fibers. These parameters generally returned to the age-matched control levels after reloading. It was suggested that antigravity-related tonic activity plays an important role in the gain of single neural innervation and of slow contractile properties and phenotype in soleus muscle fibers, which are not directly related to gene expression.

  15. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  16. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  17. Effects of teeth clenching on the soleus H reflex during lower limb muscle fatigue.

    PubMed

    Mitsuyama, Akihiro; Takahashi, Toshiyuki; Ueno, Toshiaki

    2017-04-01

    We assessed whether the soleus H reflex was depressed or facilitated in association with voluntary teeth clenching during muscle fatigue. A total of 13 and 9 healthy adult subjects were instructed to perform right-side tiptoe standing for 5 (TS1) and 10min (TS2) to induce the soleus muscle fatigue. Electromyograms (EMGs) were recorded from the bilateral masseter as well as the right-side soleus muscles. H reflex was evoked using a surface electrode. The isometric muscle strength during plantar flexion was measured. We tested two dental occlusal conditions (1) with maximal voluntary teeth clenching (MVTC) and (2) at mandibular rest position (RP). H reflex was evoked before and after TS1 and TS2. The isometric muscle strength during plantar flexion was measured before and after TS1 and TS2. Mean amplitudes of H reflex with MVTC before and after TS1 were significantly larger than that with RP before and after TS1. The mean peak torque (PT) during isometric plantar flexion was observed significant differences in all subjects. The mean amplitude of H reflex with MVTC before TS2 was significantly larger than that with RP before TS2. No significant difference between RP after TS2 and MVTC after TS2. The mean PT with MVTC before TS2 was significantly larger than that with RP before TS2. There was no significant difference between RP and MVTC after TS2. The present study demonstrated that teeth clenching could facilitate H reflex regardless of the degree of muscle fatigue. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  18. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury

    PubMed Central

    Wiberg, Rebecca; Jonsson, Samuel; Novikova, Liudmila N.; Kingham, Paul J.

    2015-01-01

    Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury. PMID:26691660

  19. [Structural changes in the soleus muscle of rats on the Kosmos-series biosatellites and in hypokinesia].

    PubMed

    Il'ina-Kakueva, E I; Portugalov, V V

    1981-01-01

    Structural changes in the soleus muscle of rats used in flight and synchronous experiments of the Cosmos program and hypokinetic studies have been investigated. It is hypothesized that focal edema and dystrophic changes observed in flight, synchronous and hypokinetic rats can be caused by circulation disorders of different etiology. In flight and synchronous rats they develop two days postflight due to the deconditioning of the muscle tissue and intraorgan vascular system which fail to meet the requirements after transition from 0 g to 1 g. In hypokinetic rats circulation disorders occur on the first experimental day due to mechanical causes (paws are pressed against the cage floor impeding venous outflow) and muscle pump deficiency. In all cases circulation disorders seem to be associated with peculiar features of angioarchitectonics of the soleus muscle.

  20. Size and myonuclear domains in Rhesus soleus muscle fibers: short-term spaceflight

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Talmadge, R. J.; Bodine, S. C.; Fanton, J. W.; Koslovskaya, I.; Edgerton, V. R.

    2001-01-01

    The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.

  1. Relative changes with contraction in the central excitability state of the tibialis anterior and calf muscles.

    PubMed Central

    Fisher, M A

    1980-01-01

    F responses were recorded from the surface of the tibialis muscle and medial aspect of the soleus muscle in 14 normal subjects. The persistence (that is the fraction of measurable F responses found with a series of supramaximal stimuli) and average F amplitudes (measured peak-to-peak and based on at least five F responses) were determined both at rest and with isometric contraction with the ankle maintained at 90 degrees. Although the persistence at rest was significantly less in the tibialis anterior soleus than the (p less than 0.001), no significant difference was found with the muscles contracted. This was associated with a significant increase in both average F amplitudes and average F amplitude/direct motor response ratios in the tibialis anterior in comparison to the soleus. In four of the subjects, studies were also performed when the H reflex in the soleus muscle was eliminated by thigh compression. Comparable changes in both F response persistence and average F amplitude were found with and without an H reflex. These data indicate that, in contrast to the situation at rest, with isometric contraction the "central excitatory state" of the tibialis anterior is at least as great as in its antagonist antigravity muscles and that this is not due simply to increased large fiber reflex input associated with agonist contraction. PMID:7373321

  2. Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle.

    PubMed Central

    Warren, G L; Hayes, D A; Lowe, D A; Prior, B M; Armstrong, R B

    1993-01-01

    1. The initiation of exercise-induced muscle injury is thought to be the result of high tensile stresses produced in the muscle during eccentric contractions. Materials science theory suggests that high tensile stresses could initiate the injury during the first eccentric contraction (normal stress theory) or after multiple eccentric contractions (materials fatigue). It was the objective of this study to investigate the two possibilities. 2. Rat soleus muscles (n = 66; 11 protocols with 6 muscles per protocol) were isolated, placed in an oxygenated Krebs-Ringer buffer at 37 degrees C, and baseline measurements were made. The muscle then performed an injury protocol which consisted of between zero and ten eccentric contractions (muscle starting length = 0.90 soleus muscle length, L0; length change = 0.25 L0; velocity = 1.5 L0/s; peak force = 180% maximal isometric tetanic tension (P0); time between contractions = 4 min; total duration of the injury protocol = 40 min). At the end of the injury protocol, the muscle was incubated in buffer for 1 h; every 15 min, an isometric twitch and tetanus were performed and lactate dehydrogenase (LDH) release was measured. Total muscle [Ca2+] was measured at the end of the incubation. 3. Change-point regression analysis indicates that at 0 min into the incubation, declines in P0, maximal rate of tension development (+dP/dt), maximal rate of relaxation (-dP/dt), and muscle stiffness (dP/dx) became significantly greater after eight eccentric contractions (p < or = 0.05). No relation was found between the number of eccentric contractions performed and the LDH activity at 0 min into the incubation, although after 60 min of incubation, LDH activity in the buffer was linearly related to eccentric contraction number (p = 0.01). There was no relationship between total muscle [Ca2+] and eccentric contraction number. These findings support the materials fatigue hypothesis of exercise-induced muscle injury. PMID:8229814

  3. Synergistic ablation does not affect atrophy or altered myosin heavy chain expression in the non-weight bearing soleus muscle

    NASA Technical Reports Server (NTRS)

    Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.

    1996-01-01

    The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.

  4. Astaxanthin Supplementation Delays Physical Exhaustion and Prevents Redox Imbalances in Plasma and Soleus Muscles of Wistar Rats

    PubMed Central

    Polotow, Tatiana G.; Vardaris, Cristina V.; Mihaliuc, Andrea R.; Gonçalves, Marina S.; Pereira, Benedito; Ganini, Douglas; Barros, Marcelo P.

    2014-01-01

    Astaxanthin (ASTA) is a pinkish-orange carotenoid commonly found in marine organisms, especially salmon. ASTA is a powerful antioxidant and suggested to provide benefits for human health, including the inhibition of LDL oxidation, UV-photoprotection, and prophylaxis of bacterial stomach ulcers. Exercise is associated to overproduction of free radicals in muscles and plasma, with pivotal participation of iron ions and glutathione (GSH). Thus, ASTA was studied here as an auxiliary supplement to improve antioxidant defenses in soleus muscles and plasma against oxidative damage induced by exhaustive exercise. Long-term 1 mg ASTA/kg body weight (BW) supplementation in Wistar rats (for 45 days) significantly delayed time to exhaustion by 29% in a swimming test. ASTA supplementation increased scavenging/iron-chelating capacities (TEAC/FRAP) and limited exercise-induced iron overload and its related pro-oxidant effects in plasma of exercising animals. On the other hand, ASTA induced significant mitochondrial Mn-dependent superoxide dismutase and cytosolic glutathione peroxidase antioxidant responses in soleus muscles that, in turn, increased GSH content during exercise, limited oxidative stress, and delayed exhaustion. We also provided significant discussion about a putative “mitochondrial-targeted” action of ASTA based on previous publications and on the positive results found in the highly mitochondrial populated (oxidative-type) soleus muscles here. PMID:25514562

  5. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  6. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    PubMed Central

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  7. Effects of combined stretching and clenbuterol on disuse atrophy in rat soleus muscle.

    PubMed

    Yamazaki, Toshiaki; Yokogawa, Masami; Tachino, Katsuhiko

    2009-01-01

    Clinically, disuse muscle atrophy is often seen among patients who are severely debilited and are on prolonged bed rest. Common physical therapy interventions are not successful in preventing disuse muscle atrophy early in the medical treatment of critically ill patients. In situations such as this, the use of a β 2-adrenergic agonist such as clenbuterol (Cb) may be of benefit in preventing atrophy. Also, recent studies have suggested that stretching is possible in preventing disuse muscle atrophy and the decline in muscle strength. The objective of this study was to evaluate the effects of Cb medication combined with stretching (ST) on rat soleus muscle (SOL) during the progression of disuse muscle atrophy. Thirty-five male Wistar rats were used in this study. The rats were divided into five groups: control (CON), hindlimb-unweighting (HU) only, HU+ST, HU+Cb medication, and HU+ST+Cb groups. The right SOL in stretching groups was maintained a stretched position for one hour daily by passively dorsiflexing the ankle joint under non-anesthesia. The experimental period was 2 weeks. In the ST group, peak twitch tension per cross-sectional area in soleus muscle was significantly larger than in the Cb group, while there was no significant difference between the CON and ST groups. The conversion of type I to type II fibers that was observed in the Cb group was not recognized in the combined ST and Cb group. Distinct effect of combined stretching and Cb medication was not recognized statistically. The results indicate that Cb affects muscle morphological characteristics while stretching affects contractile properties. These data suggest that a combined ST and Cb intervention considered the type-specificity of muscle fiber may be need more consideration for preventing disuse muscle atrophy and the decline in muscle strength.

  8. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight.

    PubMed

    Ishihara, Akihiko; Fujino, Hidemi; Nagatomo, Fumiko; Takeda, Isao; Ohira, Yoshinobu

    2008-12-01

    Gene expression levels of heat shock proteins (HSPs) in the slow-twitch soleus and fast-twitch plantaris muscles of rats were determined after hindlimb suspension or spaceflight. Male rats were hindlimb-suspended for 14 d or exposed to microgravity for 9 d. The mRNA expression levels of HSP27, HSP70, and HSP84 in the hindlimb-suspended and microgravity-exposed groups were compared with those in the controls. The mRNA expression levels of the 3 HSPs in the soleus muscle under normal conditions were higher compared with those in the plantaris muscle. The mRNA expression levels of the 3 HSPs in the soleus muscle were inhibited by hindlimb suspension and spaceflight. The mRNA expression levels of the 3 HSPs in the plantaris muscle did not change after hindlimb suspension. It is suggested that the mRNA expression levels of the 3 HSPs are regulated by the mechanical and neural activity levels, and therefore the decreased mRNA expression levels of HSPs in the slow-twitch muscle following hindlimb suspension and spaceflight are related to a reduction in the mechanical and neural activity levels.

  9. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    NASA Astrophysics Data System (ADS)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  10. Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading

    NASA Technical Reports Server (NTRS)

    Ingalls, C. P.; Warren, G. L.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    The objective of this study was to determine whether altered intracellular Ca(2+) handling contributes to the specific force loss in the soleus muscle after unloading and/or subsequent reloading of mouse hindlimbs. Three groups of female ICR mice were studied: 1) unloaded mice (n = 11) that were hindlimb suspended for 14 days, 2) reloaded mice (n = 10) that were returned to their cages for 1 day after 14 days of hindlimb suspension, and 3) control mice (n = 10) that had normal cage activity. Maximum isometric tetanic force (P(o)) was determined in the soleus muscle from the left hindlimb, and resting free cytosolic Ca(2+) concentration ([Ca(2+)](i)), tetanic [Ca(2+)](i), and 4-chloro-m-cresol-induced [Ca(2+)](i) were measured in the contralateral soleus muscle by confocal laser scanning microscopy. Unloading and reloading increased resting [Ca(2+)](i) above control by 36% and 24%, respectively. Although unloading reduced P(o) and specific force by 58% and 24%, respectively, compared with control mice, there was no difference in tetanic [Ca(2+)](i). P(o), specific force, and tetanic [Ca(2+)](i) were reduced by 58%, 23%, and 23%, respectively, in the reloaded animals compared with control mice; however, tetanic [Ca(2+)](i) was not different between unloaded and reloaded mice. These data indicate that although hindlimb suspension results in disturbed intracellular Ca(2+) homeostasis, changes in tetanic [Ca(2+)](i) do not contribute to force deficits. Compared with unloading, 24 h of physiological reloading in the mouse do not result in further changes in maximal strength or tetanic [Ca(2+)](i).

  11. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles.

    PubMed

    Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori

    2009-01-01

    This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.

  12. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    NASA Astrophysics Data System (ADS)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  13. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats.

    PubMed

    Riley, D A

    1998-01-01

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  14. Stretch reflex excitability of the anti-gravity ankle extensor muscle in elderly humans.

    PubMed

    Kawashima, N; Nakazawa, K; Yamamoto, S-I; Nozaki, D; Akai, M; Yano, H

    2004-01-01

    To examine whether the stretch reflex excitability of the soleus muscle changes with age, stretch reflexes at rest (REST) and during weak voluntary contractions (ACT) were elicited in 18 older and 14 younger subjects. The amplitude of the stretch reflex responses and gain, defined as the gradient of the regression line for the relation between stretch reflex responses against the angular velocity of the applied perturbation, were evaluated in each short-latency (M1) and two long-latency components (M2 and M3). It was found that in the older group, both the amplitude and gain of the M1 component did not change from the REST to the ACT conditions, whereas in the younger group both variables significantly increased from the REST to ACT conditions. The latency of the M1 component was significantly shorter under the REST condition (older vs. younger: 51.8 +/- 7.37 vs. 55.1 +/- 8.69 ms), while no group differences were found in those variables under the ACT condition, suggesting that the muscle-tendon complexes of SOL muscles of the older subjects were less elastic and had less slack, probably due to age-related histochemical alterations. Further, the Hoffman reflex (H-reflex), elicited during the REST condition in 10 older and 11 younger subjects showed no significant differences, suggesting that the soleus motoneuron response to the Ia input was comparable between the two subject groups. The histochemical alterations occurring with the ageing process might augment the short-latency stretch reflex in the SOL muscle without enhancement of motoneuronal excitability, and this effect might be masked when the muscle is voluntarily activated.

  15. Capillarity, oxidative capacity and fibre composition of the soleus and gastrocnemius muscles of rats in hypothyroidism.

    PubMed Central

    Sillau, A H

    1985-01-01

    Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729

  16. Effect of spaceflight on skeletal muscle: Mechanical properties and myosin isoform content of a slow muscle

    NASA Technical Reports Server (NTRS)

    Caiozzo, Vincent J.; Baker, Michael J.; Herrick, Robert E.; Tao, Ming; Baldwin, Kenneth M.

    1994-01-01

    This study examined changes in contractile, biochemical, and histochemical properties of slow antigravity skeletal muscle after a 6-day spaceflight mission. Twelve male Sprague-Dawley rats were randomly divided into two groups: flight and ground-based control. Approximately 3 h after the landing, in situ contractile measurements were made on the soleus muscles of the flight animals. The control animals were studied 24 h later. The contractile measurements included force-velocity relationship, force-frequency relationship, and fatigability. Biochemical measurements focused on the myosin heavy chain (MHC) and myosin light chain profiles. Adenosinetriphosphatase histochemistry was performed to identify cross-sectional area of slow and fast muscle fibers and to determine the percent fiber type distribution. The force-velocity relationships of the flight muscles were altered such that maximal isometric tension P(sub o) was decreased by 24% and maximal shortening velocity was increased by 14% (P less than 0.05). The force-frequency relationship of the flight muscles was shifted to the right of the control muscles. At the end of the 2-min fatigue test, the flight muscles generated only 34% of P(sub o), whereas the control muscles generated 64% of P(sub o). The flight muscles exhibited de novo expression of the type IIx MHC isoform as well as a slight decrease in the slow type I and fast type IIa MHC isoforms. Histochemical analyses of flight muscles demonstrated a small increase in the percentage of fast type II fibers and a greater atrophy of the slow type I fibers. The results demonstrate that contractile properties of slow antigravity skeletal muscle are sensitive to the microgravity environment and that changes begin to occur within the 1st wk. These changes were at least, in part, associated with changes in the amount and type of contractile protein expressed.

  17. Depressed tetanic contactile function cannot be compensated by increasing stimulating frequency in unloaded soleus muscle

    NASA Astrophysics Data System (ADS)

    Gao, Fang; Yu, Zhi-Bin

    2005-08-01

    The weightlessness-induced muscle atrophy is associated with a reduced force and power and with an increased fatigability [1]. In prolonged manned space missions, these alterations in skeletal muscles could limit the crew's ability to work in space and to rapidly egress in an emergency on return to Earth. In order to elucidate the underlying mechanisms of the increased fatigability in the atrophic skeletal muscle, we isolated the typically fast and slow muscle, extensor digitorum longus (EDL) and soleus (SOL), to observe the changes in maximal contraction tension, optimal stimulating frequency, and recovery features after fatigue in the intermittent tetanic contraction.

  18. Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture

    PubMed Central

    Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto

    2014-01-01

    [Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively. PMID:25540485

  19. Rehabilitation Exercises to Induce Balanced Scapular Muscle Activity in an Anti-gravity Posture.

    PubMed

    Ishigaki, Tomonobu; Yamanaka, Masanori; Hirokawa, Motoki; Tai, Keita; Ezawa, Yuya; Samukawa, Mina; Tohyama, Harukazu; Sugawara, Makoto

    2014-12-01

    [Purpose] The purpose of this study was to compare the intramuscular balance ratios of the upper trapezius muscle (UT) and the lower trapezius muscle (LT), and the intermuscular balance ratios of the UT and the serratus anterior muscle (SA) among prone extension (ProExt), prone horizontal abduction with external rotation (ProHAbd), forward flexion in the side-lying position (SideFlex), side-lying external rotation (SideEr), shoulder flexion with glenohumeral horizontal abduction load (FlexBand), and shoulder flexion with glenohumeral horizontal adduction load (FlexBall) in the standing posture. [Methods] The electromyographic (EMG) activities of the UT, LT and SA were measured during the tasks. The percentage of maximum voluntary isometric contraction (%MVIC) was calculated for each muscle, and the UT/LT ratios and the UT/SA ratios were compared among the tasks. [Results] The UT/LT ratio with the FlexBand was not significantly different from those of the four exercises in the side-lying and prone postures. The UT/SA ratio with the FlexBall demonstrated appropriate balanced activity. [Conclusion] In an anti-gravity posture, we recommend the FlexBand and the FlexBall for inducing balanced UT/LT and UT/SA ratios, respectively.

  20. Calcineurin-NFAT Signaling and Neurotrophins Control Transformation of Myosin Heavy Chain Isoforms in Rat Soleus Muscle in Response to Aerobic Treadmill Training.

    PubMed

    Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong

    2014-12-01

    This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN-NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins

  1. Isoform-specific changes in the Na,K-ATPase of rat soleus muscle during acute hindlinb suspension

    NASA Astrophysics Data System (ADS)

    Krivoi, Igor; Heiny, Judith; Bouzinova, Elena; Matchkov, Vladimir; Kravtsova, Violetta; Petrov, Aleksey; Zefirov, Andrey; Vasiliev, Alexander

    The largest pool of Na,K-ATPase (NKA) in a vertebrate's body is contained in the skeletal muscles where the alpha1 and alpha2 isoforms of NKA alpha subunit are expressed. The NKA is critically important for excitability, electrogenesis and contractility of skeletal muscle. Skeletal muscle use strongly regulates the content of NKA, and increased muscle activity differently regulates the alpha1 and alpha2 isoforms. However, whether skeletal muscle disuse affects NKA content and activity has not been investigated. This study examines for the first time the consequences of acute hindlinb suspension (HS) on the alpha1 and alpha2 NKA isozymes in rat soleus muscle. We subjected rats to HS for 6-12 hours and analyzed its effect on the resting membrane potential (RMP) in different sarcolemma regions of m.soleus fibers; the electrogenic transport activity, protein content and mRNA expression of the alpha1 and alpha2 NKA; the extracellular level of acetylcholine, and the plasma membrane localization of the alpha2 isozyme using confocal microscopy with cytochemistry. Our results show that 6 h HS specifically decreases the electrogenic activity of the NKA alpha2 isozyme and depolarizes m.soleus fibers. These effects are irreversible in the extrajunctional membrane region up to 12 h HS. The decreased alpha2 NKA activity is due to a decrease in enzyme activity rather than by altered protein content, mRNA expression, or localization in the sarcolemma. In addition, HS does not alter the alpha2 NKA electrogenic transport due to decreased extracellular acetylcholine level. However, adaptive mechanism(s) operate at the junctional membrane to restore alpha2 NKA electrogenic activities and the RMP after 12 h of HS. This mechanism operates specifically at the synaptic membrane region, presumably via increase in both alpha2 isozyme mRNA expression and protein content. This basic information on a protein as vital as the NKA is expected to advance our understanding of the cellular and

  2. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  3. Glucose transporters and maximal transport are increased in endurance-trained rat soleus

    NASA Technical Reports Server (NTRS)

    Slentz, C. A.; Gulve, E. A.; Rodnick, K. J.; Henriksen, E. J.; Youn, J. H.; Holloszy, J. O.

    1992-01-01

    Voluntary wheel running induces an increase in the concentration of the regulatable glucose transporter (GLUT4) in rat plantaris muscle but not in soleus muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). Wheel running also causes hypertrophy of the soleus in rats. This study was undertaken to ascertain whether endurance training that induces enzymatic adaptations but no hypertrophy results in an increase in the concentration of GLUT4 protein in rat soleus (slow-twitch red) muscle and, if it does, to determine whether there is a concomitant increase in maximal glucose transport activity. Female rats were trained by treadmill running at 25 m/min up a 15% grade, 90 min/day, 6 days/wk for 3 wk. This training program induced increases of 52% in citrate synthase activity, 66% in hexokinase activity, and 47% in immunoreactive GLUT4 protein concentration in soleus muscles without causing hypertrophy. Glucose transport activity stimulated maximally with insulin plus contractile activity was increased to roughly the same extent (44%) as GLUT4 protein content in soleus muscle by the treadmill exercise training. In a second set of experiments, we examined whether a swim-training program increases glucose transport activity in the soleus in the presence of a maximally effective concentration of insulin. The swimming program induced a 44% increase in immunoreactive GLUT4 protein concentration. Glucose transport activity maximally stimulated with insulin was 62% greater in soleus muscle of the swimmers than in untrained controls. Training did not alter the basal rate of 2-deoxyglucose uptake.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Effects of adrenomedullin on tumour necrosis factor alpha, interleukins, endothelin-1, leptin, and adiponectin in the epididymal fat and soleus muscle of the rat.

    PubMed

    Liao, S B; Wong, P F; Cheung, B M Y; Tang, F

    2013-01-01

    Adrenomedullin (ADM) is a peptide hormone, which participates in the development of metabolic syndrome. In this study, we have investigated the interaction of ADM and cytokines, endothelin-1 (EDN-1) and adipokines in the epididymal fat and the soleus muscle. Epididymal fat and soleus muscles from adult male Sprague-Dawley rat were incubated with ADM at concentration of 100 nM for the study of the gene expression and secretion of tumour necrosis factor (TNF-α), EDN-1, leptin, adiponectin, interleukin 1β (IL-1β), and IL-6. The effects of TNF-α and EDN-1 on ADM gene expression and secretion were also investigated. The results showed that ADM decreased the gene expression and protein secretion of TNF-α in both the epididymal fat and the soleus muscle and decreased IL-1β gene expression and secretion in the soleus muscle. It also decreased endothelin gene expression and adiponectin gene expression and release and increased IL-6 and leptin gene expression and secretion in the epididymal fat. These effects were effectively blocked by the calcitonin gene-related peptide (CGRP) receptor antagonist, hCGRP8-37, but not by the ADM receptor antagonist, hADM22-52. The reduction of inflammatory cytokines and EDN-1 may help to decrease insulin resistance and increase glucose uptake. As TNF-α also increases ADM levels in the epididymal fat and the soleus muscle and EDN-1 also increases ADM levels in the epididymal fat, they may form a feedback loop with ADM in these tissues. The increase in leptin and the decrease in adiponectin by ADM in the epididymal fat may have opposite effects on metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    PubMed

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  6. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle

    PubMed Central

    Mobley, Christopher B.; Mumford, Petey W.; Kephart, Wesley C.; Haun, Cody T.; Holland, Angelia M.; Beck, Darren T.; Martin, Jeffrey S.; Young, Kaelin C.; Anderson, Richard G.; Patel, Romil K.; Langston, Gillis L.; Lowery, Ryan P.; Wilson, Jacob M.; Roberts, Michael D.

    2017-01-01

    Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus

  7. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  8. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    PubMed Central

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2013-01-01

    Aim This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. Method Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the ‘progressive saturation’ method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. Results T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20–0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. Conclusion In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers. PMID:20206561

  9. Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Kirby, Christopher; Rosenberg, Sara; Tome, Margaret; Chase, Peter

    1991-01-01

    A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both.

  10. Time course of the response of carbohydrate metabolism to unloading of the soleus

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  11. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    PubMed Central

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold

  12. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse.

    PubMed

    Ogneva, Irina V; Biryukov, Nikolay S

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: "C", "C+L", "HS", and "HS+L". The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin "C+L" and "HS+L". However, lecithin treatment for three days resulted in an increase in cell stiffness; in the "C+L" group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group "C". The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group "C+L" increased by 200% compared with that of group "C", and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold, respectively, but the levels

  13. Metabolic adaptation of skeletal muscles to gravitational unloading

    NASA Astrophysics Data System (ADS)

    Ohira, Y.; Yasui, W.; Kariya, F.; Wakatsuki, T.; Nakamura, K.; Asakura, T.; Edgerton, V. R.

    Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, β-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes. Unloading-related atrophy is prominent in red muscle or slow-twitch fiber 1, 2. Such atrophy is accompanied by a shift of contractile properties toward fast-twitch type 2-9. Further, inhibition of mitochondrial metabolism in these muscles is also reported by some studies 10-14 suggesting a lowered mitochondrial biogenesis, although results from some studies do not necessarily agree 1, 7, 15. However, the precise mechanism responsible for such alterations of muscle properties in response to gravitational unloading is unclear. On the contrary, mitochondrial biogenesis, suggested by mitochondrial enzyme activities and/or mass, is stimulated in muscles with depleted high-energy phosphates by cold exposure 16 and/or by feeding

  14. Different responses in soleus muscle fibers of Wistar and Wistar Hannover rats to hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Kawano, Fuminori; Terada, Masahiro; Matsuoka, Yoshikazu; Shinoda, Yo; Ishihara, Akihiko; Ohira, Yoshinobu

    2005-08-01

    Effects of 16 days of hindlimb suspension on the characteristics of single soleus muscle fibers were compared between male Wistar and Wistar Hannover rats (5 weeks old). The greater effects of unloading were noted in Wistar Hannover rats. The unloading-related reductions of muscle weight and fiber cross-sectional area vs. the pre-suspension levels were greater than Wistar rats. The percent of fibers expressing pure type I myosin heavy chain (MHC) was decreased and that of type I+II MHC fibers was increased, the magnitudes of these changes were greater than Wistar rats. Total number of myonuclei in control situation was greater in Wistar Hannover rats, but the more numbers of myonuclei were decreased following unloading. Responses of myonuclear domain levels were similar. The numbers of both quiescent and mitotic active satellite cells in control situation were greater in Wistar rats. But the magnitude of the unloading- related decrease was identical for Wistar Hannover and Wistar rats. Although the level of heat shock protein 27 (HSP27) expression in Wistar rats was decreased by unloading, de novo appearance of HSP27 was noted in Wistar Hannover rats. It is suggested that greater responses of soleus muscle fibers of Wistar Hannover than Wistar rats may be related to the different expression of protein, although the precise mechanism is still unclear.

  15. The soleus syndrome. A cause of medial tibial stress (shin splints).

    PubMed

    Michael, R H; Holder, L E

    1985-01-01

    Radionuclide bone scans have demonstrated linear uptake along the posterior medial border of the tibia in patients with shin splints. This area was investigated by anatomical dissection (14 human cadavers), electromyographic (EMG) and muscle stimulation studies (10 patients), and open biopsy (1 patient). Histologically, the increased metabolic activity manifested on the radionuclide scan is due to a periostitis with new bone formation. The soleus muscle and its investing fascia are anatomically and biomechanically implicated in the production of these stress changes, particularly when the heel is in the pronated position. The soleus muscle and fascia form a tough "soleus bridge" over the deep compartment which is thought to be important in patients requiring surgical decompression.

  16. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Xuequn; Malek, Moh H.

    2015-01-01

    Unloading or disuse rapidly results in skeletal muscle atrophy, switching to fast-type fibers, and decreased resistance to fatigue. The recovery process is of major importance in rehabilitation for various clinical conditions. Here we studied mouse soleus muscle during 60 days of reloading after 4 wk of hindlimb suspension. Unloading produced significant atrophy of soleus muscle with decreased contractile force and fatigue resistance, accompanied by switches of myosin isoforms from IIa to IIx and IIb and fast troponin T to more low-molecular-weight splice forms. The total mass, fiber size, and contractile force of soleus muscle recovered to control levels after 15 days of reloading. However, the fatigue resistance showed a trend of worsening during this period with significant infiltration of inflammatory cells at days 3 and 7, indicating reloading injuries that were accompanied by active regeneration with upregulations of filamin-C, αB-crystallin, and desmin. The fatigue resistance partially recovered after 30–60 days of reloading. The expression of peroxisome proliferator-activated receptor γ coactivator 1α and mitofusin-2 showed changes parallel to that of fatigue resistance after unloading and during reloading, suggesting a causal role of decreased mitochondrial function. Slow fiber contents in the soleus muscle were increased after 30–60 days of reloading to become significantly higher than the normal level, indicating a secondary adaption to compensate for the slow recovery of fatigue resistance. PMID:26447205

  17. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats

    NASA Technical Reports Server (NTRS)

    Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    2000-01-01

    In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.

  18. Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The hypothesis that hindlimb suspension (HS) increases the fatigability of the soleus during intense contractile activity and that the increased fatigue is associated with a reduced muscle blood flow was tested using caged control rats and rats subjected to HS for 15 days. After 15 days, either the soleus or the gastrocnemius-plantaris-soleus (G-P-S) muscle group was stimulated in situ (10 min at 100 Hz, 100 ms trains at 120/min), and in the G-P-S preparation, blood flow was measured with radiolabeled microspheres before and at 2 min and 10 min after the start of contractile activity. The results indicate that 15 days of HS resulted in increased fatigability of the soleus, but the effect was not caused by a reduced muscle blood flow.

  19. Soleus and lateral gastrocnemius H-reflexes during standing with unstable footwear.

    PubMed

    Friesenbichler, Bernd; Lepers, Romuald; Maffiuletti, Nicola A

    2015-05-01

    Unstable footwear has been shown to increase lower extremity muscle activity, but the reflex response to perturbations induced by this intervention is unknown. Twenty healthy subjects stood in stable and unstable footwear conditions (presented randomly) while H-reflex amplitude and background muscle activity were measured in the soleus and lateral gastrocnemius (LG) muscles. Wearing unstable footwear resulted in larger H-reflexes (normalized to the maximal M-wave) for the LG (+12%; P = 0.025), but not for the soleus (+4%; P > 0.05). Background activity of both muscles was significantly higher in the unstable condition. The H-reflex facilitation observed with unstable footwear was unexpected, as challenging postural conditions usually result in reflex depression. Increased muscle activity, decreased presynaptic inhibition, and/or more forward postural position may have (over-)compensated the expected reflex depression. Differences between LG and soleus H-reflex modulation may be due to diverging motor unit recruitment thresholds. © 2015 Wiley Periodicals, Inc.

  20. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  1. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  2. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    CARBERRY, STEVEN; BRINKMEIER, HEINRICH; ZHANG, YAXIN; WINKLER, CLAUDIA K.; OHLENDIECK, KAY

    2013-01-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein

  3. Voluntary run training but not estradiol deficiency alters the tibial bone-soleus muscle functional relationship in mice.

    PubMed

    Warren, Gordon L; Moran, Amy L; Hogan, Harry A; Lin, Angela S; Guldberg, Robert E; Lowe, Dawn A

    2007-11-01

    The study's objective was to investigate how estrogen deficiency and run training affect the tibial bone-soleus muscle functional relationship in mice. Female mice were assigned into one of two surgical conditions, ovariectomy (OVX) or sham ovariectomy (sham), and one of two activity conditions, voluntary wheel running (Run) or sedentary (Sed). To determine whether differences observed between OVX and sham conditions could be attributed to estradiol (E(2)), additional OVX mice were supplemented with E(2). Tibial bones were analyzed for their functional capacities, ultimate load, and stiffness. Soleus muscles were analyzed for their functional capacities, maximal isometric tetanic force (P(o)), and peak eccentric force. The ratios of bone functional capacities to those of muscle were calculated. The bone functional capacities were affected by both surgical condition and activity but more strongly by surgical condition. Ultimate load and stiffness for the sham group were 7-12% greater than those for OVX animals (P = 0.002), whereas only stiffness was greater for Run than for Sed animals (9%; P = 0.015). The muscle functional capacities were affected by both surgical condition and activity; however, in contrast to the bone, the muscle was more affected by activity. P(o) and peak eccentric force were 10-21% greater for Run than for Sed animals (P < or = 0.016), whereas only P(o) was greater in sham than in OVX animals (9%; P = 0.011). The bone-to-muscle ratios of functional capacities were affected by activity but not by surgical condition or E(2) supplementation. Thus a mismatch of bone-muscle function occurred in mice that voluntarily ran on wheels, irrespective of estrogen status.

  4. The role of the antigravity musculature during quiet standing in man.

    PubMed

    Soames, R W; Atha, J

    1981-01-01

    The view that postural regulation is achieved by controlling the destabilising effects of gravity through myotatic reflex activity was examined using surface electromyography. Forty seconds of recordings were made of myograms from eighteen muscles in each of a sample of nine young adults. It was observed that antigravity muscular activity in standing is generally low and often absent, and that the myograms from the muscles of the right and left sides of the body differed appreciably, the two sides rarely working together. Some sudden and united bursts of antigravity muscle activity could be observed. These might well have been stretch reflex induced, but they were transient and rare. It is concluded that the view that postural control in quiet standing is continuously mediated in a simple way by stretch reflex mechanisms is probably not valid, and that other mechanisms for controlling posture remain to be identified.

  5. Recruitment of the Rhesus soleus and medial gastrocnemius before, during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Hodgson, J. A.; Aragon, J.; Day, M. K.; Kozlovskaya, I.; Edgerton, V. R.

    1996-01-01

    Electromyograms were recorded from the soleus and medial gastrocnemius muscles and tendon force from the medial gastrocnemius muscle of 2 juvenile Rhesus monkeys before, during and after Cosmos flight 2229 and of ground control animals. Recording sessions were made while the Rhesus were performing a foot pedal motor task. Preflight testing indicated normal patterns of recruitment between the soleus and medial gastrocnemius, i.e. a higher level of recruitment of the soleus compared to the medial gastrocnemius during the task. Recording began two days into the spaceflight and showed that the media gastrocnemius was recruited preferentially over the soleus. This observation persisted throughout the flight and for the 2 week period of postflight testing. These data indicate a significant change in the relative recruitment of slow and fast extensor muscles under microgravity conditions. The appearance of clonic-like activity in one muscle of each Rhesus during flight further suggests a reorganization in the neuromotor system in a microgravity environment.

  6. Dynamic Foot Pressure as a Countermeasure to Muscle Atrophy

    NASA Astrophysics Data System (ADS)

    Kyparos, A.; Layne, C. S.; Martinez, D. A.; Clarke, M. S. F.; Feeback, D. L.

    2002-01-01

    Mechanical unloading of skeletal muscle (SKM) as a consequence of space flight or ground-based analogues, such as human bedrest and rodent hindlimb suspension (HLS) models, induces SKM atrophy particularly affecting the anti-gravity musculature of the lower limbs. In the context of manned space flight, the subsequent loss of muscle strength and functionality will pose operational implications jeopardizing mission success. Exercise, currently the primary muscle degradation countermeasure, has not proven completely effective in preventing muscle atrophy. It is therefore imperative that some other forms of in- flight countermeasure be also developed to supplement the prescribed exercise regimen the astronauts follow during spaceflight. Previous work in both humans and rats has shown that mechanical stimulation of the soles of the feet increases neuromuscular activation in the lower limb musculature and that such stimulation results in the limited prevention of atrophy in the soleus muscle of unloaded rats. This study was designed to investigate the effect of cutaneous mechanoreceptor stimulation on hindlimb unloading- induced SKM atrophy in rats. It was hypothesized that mechanical stimulation of the plantar surface of the rat foot during hindlimb suspension (HLS), utilizing a novel stimulation paradigm known as Dynamic Foot Pressure (DFP), would attenuate unloading-induced SKM atrophy. Mature adult male Wistar rats were randomly assigned to four groups of 10 rats each as follows: sedentary controls (Ctrl), hindlimb suspended only (HLS), hindlimb suspended wearing an inflatable boot (HLS-IFL) and hindlimb suspended rats wearing a non-inflatable boot (HLS-NIFL). The stimulation of mechanoreceptors was achieved by applying pressure to the plantar surface of the foot during the 10-day period of HLS using a custom-built boot. The anti-atrophic effects of DFP application was quantified directly by morphological (muscle wet weight, myofiber cross-sectional area

  7. Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat.

    PubMed Central

    Dimitriadis, G D; Leighton, B; Parry-Billings, M; West, D; Newsholme, E A

    1989-01-01

    1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations. PMID:2649073

  8. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  9. Increasing O-GlcNAcylation level on organ culture of soleus modulates the calcium activation parameters of muscle fibers.

    PubMed

    Cieniewski-Bernard, Caroline; Montel, Valerie; Berthoin, Serge; Bastide, Bruno

    2012-01-01

    O-N-acetylglucosaminylation is a reversible post-translational modification which presents a dynamic and highly regulated interplay with phosphorylation. New insights suggest that O-GlcNAcylation might be involved in striated muscle physiology, in particular in contractile properties such as the calcium activation parameters. By the inhibition of O-GlcNAcase, we investigated the effect of the increase of soleus O-GlcNAcylation level on the contractile properties by establishing T/pCa relationships. We increased the O-GlcNAcylation level on soleus biopsies performing an organ culture of soleus treated or not with PUGNAc or Thiamet-G, two O-GlcNAcase inhibitors. The enhancement of O-GlcNAcylation pattern was associated with an increase of calcium affinity on slow soleus skinned fibers. Analysis of the glycoproteins pattern showed that this effect is solely due to O-GlcNAcylation of proteins extracted from skinned biopsies. We also characterized the O-GlcNAcylated contractile proteins using a proteomic approach, and identified among others troponin T and I as being O-GlcNAc modified. We quantified the variation of O-GlcNAc level on all these identified proteins, and showed that several regulatory contractile proteins, predominantly fast isoforms, presented a drastic increase in their O-GlcNAc level. Since the only slow isoform of contractile protein presenting an increase of O-GlcNAc level was MLC2, the effect of enhanced O-GlcNAcylation pattern on calcium activation parameters could involve the O-GlcNAcylation of sMLC2, without excluding that an unidentified O-GlcNAc proteins, such as TnC, could be potentially involved in this mechanism. All these data strongly linked O-GlcNAcylation to the modulation of contractile activity of skeletal muscle.

  10. Activity Dependent Signal Transduction in Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hamilton, Susan L.

    1999-01-01

    The overall goals of this project are: 1) to define the initial signal transduction events whereby the removal of gravitational load from antigravity muscles, such as the soleus, triggers muscle atrophy, and 2) to develop countermeasures to prevent this from happening. Our rationale for this approach is that, if countermeasures can be developed to regulate these early events, we could avoid having to deal with the multiple cascades of events that occur downstream from the initial event. One of our major findings is that hind limb suspension causes an early and sustained increase in intracellular Ca(2+) concentration ([Ca (2+)](sub i)). In most cells the consequences of changes in ([Ca (2+)](sub i))depend on the amplitude, frequency and duration of the Ca(2+) signal and on other factors in the intracellular environment. We propose that muscle remodeling in microgravity represents a change in the balance among several CA(2+) regulated signal transduction pathways, in particular those involving the transcription factors NFAT and NFkB and the pro-apoptotic protein BAD. Other Ca(2+) sensitive pathways involving PKC, ras, rac, and CaM kinase II may also contribute to muscle remodeling.

  11. Regulation of extracellular matrix elements and sarcomerogenesis in response to different periods of passive stretching in the soleus muscle of rats.

    PubMed

    Peviani, Sabrina M; Guzzoni, Vinicius; Pinheiro-Dardis, Clara M; Silva, Yara P da; Fioravante, Alisson C R; Sagawa, Adriana H; Delfino, Gabriel B; Durigan, João L Q; Salvini, Tania F

    2018-06-13

    Stretching is a common method used to prevent muscle shortening and improve limited mobility. However, the effect of different time periods on stretching-induced adaptation of the extracellular matrix and its regulatory elements have yet to be investigated. We aimed to evaluate the expression of fibrillar collagens, sarcomerogenesis, metalloproteinase (MMP) activity and gene expression of the extracellular matrix (ECM) regulators in the soleus (SOL) muscle of rats submitted to different stretching periods. The soleus muscles were submitted to 10 sets of passive stretching over 10 (St 10d) or 15 days (St 15d) (1 min per set, with 30 seconds' rest between sets). Sarcomerogenesis, muscle cross-sectional area (CSA), and MMP activity and mRNA levels in collagen (type I, III and IV), connective tissue growth factor (CTGF), growth factor-beta (TGF-β), and lysyl oxidase (LOX) were analyzed. Passive stretching over both time periods mitigated COL-I deposition in the SOL muscle of rats. Paradoxically, 10 days of passive stretching induced COL-I and COL-III synthesis, with concomitant upregulation of TGF-β1 and CTGF at a transcriptional level. These responses may be associated with lower LOX mRNA levels in SOL muscles submitted to 10 passive stretching sessions. Moreover, sarcomerogenesis was observed after 15 days of stretching, suggesting that stretching-induced muscle adaptations are time-dependent responses.

  12. Influence of peripheral magnetic stimulation of soleus muscle on H and M waves.

    PubMed

    Matsuda, Tadamitsu; Kurayama, Taichi; Tagami, Miki; Fujino, Yuji; Manji, Atsushi; Kusumoto, Yasuaki; Amimoto, Kazu

    2018-05-01

    [Purpose] This study evaluated the effects of repetitive peripheral magnetic stimulation of the soleus muscle on spinal cord and peripheral motor nerve excitability. [Subjects and Methods] Twelve healthy adults (mean age 22 years) who provided written informed consent were administered repetitive peripheral magnetic stimulation for 10 min. Pre-and post-stimulation latencies and amplitudes of H- and M-waves of the soleus muscle were measured using electromyography and compared using paired t-tests. [Results] Pre- and post-stimulation latencies (28.3 ± 3.3 vs. 29.1 ± 1.3 ms, respectively) and amplitudes (35.8 ± 1.3 vs. 35.8 ± 1.1 mV, respectively) of H-waves were similar. Pre-stimulation latencies of M-waves were significantly higher than post-stimulation latencies (6.1 ± 2.2 vs. 5.0 ± 0.9 ms, respectively), although pre- and post-stimulation amplitudes were similar (12.2 ± 1.4 vs. 12.2 ± 1.3 mV, respectively). Motor neuron excitability, based on the excitability of motor nerves and peripheral nerve action, was increased by M-waves following magnetic stimulation. [Conclusion] The lack of effect of magnetic stimulation on the amplitude and latency of the H-reflex suggests that magnetic stimulation did not activate sensory nerve synapses of α motor neurons in the spinal cord. However, because motor nerves were stimulated together with sensory nerves, the increased H-wave amplitude may have reflected changes in peripheral rather than in α motor nerves.

  13. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  14. Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy.

    PubMed

    Barber, Lee; Carty, Chris; Modenese, Luca; Walsh, John; Boyd, Roslyn; Lichtwark, Glen

    2017-08-01

    This study investigates the in vivo function of the medial gastrocnemius and soleus muscle-tendon units (MTU), fascicles, and tendons during walking in children with cerebral palsy (CP) and an equinus gait pattern. Fourteen children with CP (9 males, 5 females; mean age 10y 6mo, standard deviation [SD] 2y 11mo; GMFCS level I=8, II=6), and 10 typically developing (6 males, 4 females; mean age 10y, SD 2y 1mo) undertook full body 3D gait analysis and simultaneous B-mode ultrasound images of the medial gastrocnemius and soleus fascicles during level walking. Fascicle lengths were analysed using a semi-automated tracking algorithm and MTUs using OpenSim. Statistical parametric mapping (two-sample t-test) was used to compare differences between groups (p<0.05). In the CP group medial gastrocnemius fascicles lengthened during mid-stance gait and remained longer into late-stance compared to the typically developing group (p<0.001). CP medial gastrocnemius fascicles shortened less during stance (1.16mm [SD 1.47mm]) compared to the typically developing group (4.48mm [SD 1.94mm], p<0.001). In the CP group the medial gastrocnemius and soleus MTU and tendon were longer during early- and mid-stance (p<0.001). Ankle power during push-off (p=0.015) and positive work (p<0.002) and net work (p<0.001) were significantly lower in the CP group. Eccentric action of the CP medial gastrocnemius muscle fascicles during mid-stance walking is consistent with reduced volume and neuromuscular control of impaired muscle. Reduced ankle push-off power and positive work in the children with CP may be attributed to reduced active medial gastrocnemius fascicle shortening. These findings suggest a reliance on passive force generation for forward propulsion during equinus gait. © 2017 Mac Keith Press.

  15. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  16. In vivo behavior of the human soleus muscle with increasing walking and running speeds.

    PubMed

    Lai, Adrian; Lichtwark, Glen A; Schache, Anthony G; Lin, Yi-Chung; Brown, Nicholas A T; Pandy, Marcus G

    2015-05-15

    The interaction between the muscle fascicle and tendon components of the human soleus (SO) muscle influences the capacity of the muscle to generate force and mechanical work during walking and running. In the present study, ultrasound-based measurements of in vivo SO muscle fascicle behavior were combined with an inverse dynamics analysis to investigate the interaction between the muscle fascicle and tendon components over a broad range of steady-state walking and running speeds: slow-paced walking (0.7 m/s) through to moderate-paced running (5.0 m/s). Irrespective of a change in locomotion mode (i.e., walking vs. running) or an increase in steady-state speed, SO muscle fascicles were found to exhibit minimal shortening compared with the muscle-tendon unit (MTU) throughout stance. During walking and running, the muscle fascicles contributed only 35 and 20% of the overall MTU length change and shortening velocity, respectively. Greater levels of muscle activity resulted in increasingly shorter SO muscle fascicles as locomotion speed increased, both of which facilitated greater tendon stretch and recoil. Thus the elastic tendon contributed the majority of the MTU length change during walking and running. When transitioning from walking to running near the preferred transition speed (2.0 m/s), greater, more economical ankle torque development is likely explained by the SO muscle fascicles shortening more slowly and operating on a more favorable portion (i.e., closer to the plateau) of the force-length curve. Copyright © 2015 the American Physiological Society.

  17. Physical interpretation of antigravity

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; James, Albin

    2016-02-01

    Geodesic incompleteness is a problem in both general relativity and string theory. The Weyl-invariant Standard Model coupled to general relativity (SM +GR ), and a similar treatment of string theory, are improved theories that are geodesically complete. A notable prediction of this approach is that there must be antigravity regions of spacetime connected to gravity regions through gravitational singularities such as those that occur in black holes and cosmological bang/crunch. Antigravity regions introduce apparent problems of ghosts that raise several questions of physical interpretation. It was shown that unitarity is not violated, but there may be an instability associated with negative kinetic energies in the antigravity regions. In this paper we show that the apparent problems can be resolved with the interpretation of the theory from the perspective of observers strictly in the gravity region. Such observers cannot experience the negative kinetic energy in antigravity directly, but can only detect in and out signals that interact with the antigravity region. This is no different from a spacetime black box for which the information about its interior is encoded in scattering amplitudes for in/out states at its exterior. Through examples we show that negative kinetic energy in antigravity presents no problems of principles but is an interesting topic for physical investigations of fundamental significance.

  18. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  19. Effect of triiodothyronine (T3) excess on fatty acid metabolism in the soleus muscle from endurance-trained rats.

    PubMed

    Górecka, M; Synak, M; Brzezińska, Z; Dąbrowski, J; Żernicka, E

    2016-04-01

    We studied whether short-term administration of triiodothyronine (T3) for the last 3 days of endurance training would influence the rate of uptake of palmitic acid (PA) as well as metabolism in rat soleus muscle, in vitro. Training per se did not affect the rate of PA uptake by the soleus; however, an excess of T3 increased the rate of this process at 1.5 mmol/L PA, as well as the rate that at which PA was incorporated into intramuscular triacylglycerols (TG). The rate of TG synthesis in trained euthyroid rats was reduced after exercise (1.5 mmol/L PA). The rate of PA oxidation in all of the trained rats immediately after exercise was enhanced by comparison with the sedentary values. Hyperthyroidism additionally increased the rate of this process at 1.5 mmol/L PA. After a recovery period, the rate of PA oxidation returned to the control values in both the euthyroid and the hyperthyroid groups. Examination of the high-energy phosphate levels indicated that elevated PA oxidation after exercise-training in euthyroid rats was associated with stable ATP levels and increased ADP and AMP levels, thus reducing energy cellular potential (ECP). In the hyperthyroid rats, levels of ADP and AMP were increased in the sedentary as well as the exercise-trained rats. ECP levels were high as a result of high levels of ATP and decreased levels of ADP and AMP in hyperthyroid rats after the recovery period. In conclusion, short-term hyperthyroidism accelerates PA utilization in well-trained soleus muscle.

  20. Functional and structural adaptations of skeletal muscle to microgravity

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Riley, D. R.; Widrick, J. J.

    2001-01-01

    Our purpose is to summarize the major effects of space travel on skeletal muscle with particular emphasis on factors that alter function. The primary deleterious changes are muscle atrophy and the associated decline in peak force and power. Studies on both rats and humans demonstrate a rapid loss of cell mass with microgravity. In rats, a reduction in muscle mass of up to 37% was observed within 1 week. For both species, the antigravity soleus muscle showed greater atrophy than the fast-twitch gastrocnemius. However, in the rat, the slow type I fibers atrophied more than the fast type II fibers, while in humans, the fast type II fibers were at least as susceptible to space-induced atrophy as the slow fiber type. Space flight also resulted in a significant decline in peak force. For example, the maximal voluntary contraction of the human plantar flexor muscles declined by 20-48% following 6 months in space, while a 21% decline in the peak force of the soleus type I fibers was observed after a 17-day shuttle flight. The reduced force can be attributed both to muscle atrophy and to a selective loss of contractile protein. The former was the primary cause because, when force was expressed per cross-sectional area (kNm(-2)), the human fast type II and slow type I fibers of the soleus showed no change and a 4% decrease in force, respectively. Microgravity has been shown to increase the shortening velocity of the plantar flexors. This increase can be attributed both to an elevated maximal shortening velocity (V(0)) of the individual slow and fast fibers and to an increased expression of fibers containing fast myosin. Although the cause of the former is unknown, it might result from the selective loss of the thin filament actin and an associated decline in the internal drag during cross-bridge cycling. Despite the increase in fiber V(0), peak power of the slow type I fiber was reduced following space flight. The decreased power was a direct result of the reduced force

  1. Effects of microgravity and tail suspension on enzymes of individual soleus and tibialis anterior fibers

    NASA Technical Reports Server (NTRS)

    Chi, Maggie M.-Y.; Choski, Rati; Nemeth, Patti; Krasnov, Igor'; Il'ina-Kakueva, E. I.; Manchester, Jill K.; Lowry, Oliver H.

    1992-01-01

    Selected enzymes of energy metabolism were measured in random individual fibers of soleus and tibialis anterior (TA) muscles from rats exposed for 2 wk to spaceflight (F) aboard Cosmos 2044 or tail suspension (T) and from synchronous controls. Average size of soleus fibers (dry weight per unit length) was reduced 37 percent in F and T fibers; there was little change in Ta fibers. Enzyme changes were more pronounced in soleus than in TA fibers. Three enzymes characteristic of fast-twitch muscles, pyruvate kinase, glycerol-3-phosphate dehydrogenase, and 1-phosphofructokinase, were elevated in F and T soleus fibers, but changes in phosphofructokinase were not statistically significant. In TA fibers analyzed for hexokinase, malate dehydrogenase, phosphohexoisomerase, and pyruvate kinase, only hexokinase and malate dehydrogenase showed significant changes. Hexokinase incresed 83 percent in one of two T muscles. Enzyme data for TA fibers typed by myosin adenosinetriphosphatase were more informative: phosphofructokinase, phosphorylase, and glycerol-3-phosphate dehydrogenase were increased in type IIn fibers of either F or T muscles or both. Malate dehydrogenase was not changed in fibers of any type in either F or T muscle.

  2. Balance control and anti-gravity muscle activity during the experience of fear at heights.

    PubMed

    Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas

    2014-02-01

    Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed-loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co-contraction of leg muscles. Body sway and leg and neck muscle co-contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open- and closed-loop postural control strategy and (2) co-contraction of anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights.

  3. Fatigability and Blood Flow in the Rat Gastrocnemius-Plantaris-Soleus after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Delp, M. D.; Fitts, R. H.

    1992-01-01

    The purpose of this study was to test the hypothesis that hindlimb suspension increases the fatigability of the soleus during intense contractile activity and determine whether the increased fatigue is associated with a reduced muscle blood flow. Cage-control (C) and 15-day hindlimb-suspended (HS) rats were anesthetized, and either the gastrocnemius-plantaris-soleus (G-P-S) muscle group or the soleus was stimulated (100 Hz, 100-ms trains at 120/min) for 10 min in situ. In the G-P-S preparation, blood flow was measured with radiolabeled microspheres before and at 2 and 10 min of contractile activity. The G-P-S fatigued markedly at this stimulation frequency, and the differences between C and HS animals were not significant until the 9th min of contractile activity. In contrast, the stimulation resulted in faster rates and significantly larger amounts of fatigue in the soleus from HS than from C animals. The atrophied soleus showed significant differences by I min of stimulation (C = 70 +/- 1% vs. HS = 57 +/- 2% of peak train force) and remained different at 10 min (C = 64 +/- 4% vs. HS = 45 +/- 2% peak train force). Relative blood flow to the soleus was similar between groups before and during contractile activity (rest: C = 20 +/- 3 vs. HS= 12 +/- 3; 2 min: C= 128 +/- 6 vs. HS = 118 +/- 4; 10 min: C = 123 +/- 11 vs. HS = 105 +/- 11 ml min(exp -1) 100 g(exp -1)). In conclusion, these results established that 15 days of HS increased the fatigability of the soleus, but the effect was not caused by a reduced muscle blood flow.

  4. Selective activation of human soleus and medial gastrocnemius muscles during walking in water.

    PubMed

    Miyoshi, T; Satoh, T; Nakazawa, K; Komeda, T; Yano, H

    2000-07-01

    During walking in water (WW) the vertical component of ground reaction forces decreases, while the greater propulsive force is required to move forward against the greater resistance of water. In such reduced gravity environment, Hutchison et al. (1989) have demonstrated that the relative activation of rat medial gastrocnemius (MGAS) increased compared to that of the soleus (SOL) during swimming, suggesting different effects of peripheral information on motoneuron excitability of these muscles. It is conceivable that both buoyancy and resistance of water have different effects on the activation patterns of triceps surae muscles during WW, since the reduced weight in water might decrease the peripheral inflow relating load information while greater volitional command might be needed to propel a body forward against the water resistance. The present study was designed to assess each peripheral inflow and efferent input by adjusting the load and walking speed voluntarily during WW. The aim of this study is to investigate the dissociative activation pattern between the SOL and the MGAS during WW.

  5. Action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after nerve injury.

    PubMed

    Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko

    2017-01-01

    To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. Avaliar a ação da vanilina (Vanilla planifolia) sobre a morfologia dos músculos tibial anterior e sóleo após lesão nervosa periférica. Ratos Wistar foram divididos em quatro grupos, com sete animais cada, sendo Grupo Controle, Grupo Vanilina, Grupo Lesão e Grupo Lesão + Vanilina. Os animais dos Grupos Lesão e Grupo Lesão + Vanilina foram submetidos à lesão nervosa por meio da compressão do nervo isquiático, e os Grupos Vanilina e Grupo Lesão + Vanilina foram tratados diariamente com doses orais de vanilina (150mg/kg) do 3o ao 21o dia após a indução da lesão nervosa. Ao término do

  6. Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of weight bearing and non-weight bearing muscles.

    PubMed

    de Boer, Maarten D; Seynnes, Olivier R; di Prampero, Pietro E; Pisot, Rado; Mekjavić, Igor B; Biolo, Gianni; Narici, Marco V

    2008-09-01

    The aim of the present study was to investigate the changes in thickness, fascicle length (L (f)) and pennation angle (theta) of the antigravity gastrocnemius medialis (GM) and vastus lateralis (VL) muscles, and the non-antigravity tibialis anterior (TA) and biceps brachii (BB) muscles measured by ultrasonography in ten healthy males (aged 22.3 +/- 2.2 years) in response to 5 weeks of horizontal bed rest (BR). After BR, muscle thickness decreased by 12.2 +/- 8.8% (P < 0.05) and 8.0 +/- 9.1% (P < 0.005) in the GM and VL, respectively. No changes were observed in the TA and BB muscles. L (f) and theta decreased by 4.8 +/- 5.0% (P < 0.05) and 14.3 +/- 6.8% (P < 0.005) in the GM and by 5.9 +/- 5.3% (P < 0.05) and 13.5 +/- 16.2% (P < 0.005) in the VL, again without any changes in the TA and BB muscles. The finding that amongst the antigravity muscles of the lower limbs, the GM deteriorated to a greater extent than the VL is possibly related to the differences in relative load that this muscle normally experiences during daily loading. The dissimilar response in antigravity and non-antigravity muscles to unloading likely reflects differences in loading under normal conditions. The significant structural alterations of the GM and VL muscles highlight the rapid remodelling of muscle architecture occurring with disuse.

  7. [The relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus].

    PubMed

    Li, Li; Liu, Hong-Ju; Yang, Ming-Hao; Li, Jing-Long; Wang, Lu; Chen, Xiao-Ping; Fan, Ming

    2012-03-01

    To explore the relationship between contractile characteristics and fiber type conversion in hind-limb unloading mice soleus. After 28-day hind-limb unloading and muscle atrophy, we used the method of isolated muscle perfusion with different stimulated protocols to determine the changes in contractile characteristics including the isometric twitch force and tetanus force and fatigue index of slow twitch muscle in mice. The muscle myofibrillar composition and fiber type conversion were detected by immunofluorescence staining and real-time PCR. The isometric twitch force and the tetanus force and fatigue index were decreased progressively in 28-day unloaded mice soleus, with the increase in fast twitch fiber subtype and the decrease in slow twitch fiber subtype. The alteration of contractile characteristics is relevant to the slow-to-fast fiber conversion in mice soleus after 28-day hind-limb unloading.

  8. [CHANGING OF ISCHEMIC M. SOLEUS TETANIC CONTRACTION PARAMETERS IN RATS WITH CHRONIC ALCOHOL INTOXICATION].

    PubMed

    Melnychuk, O A; Motuziuk, O P; Shvayko, S Ye

    2015-01-01

    This article deals with the changes of isolated ischemic m. soleus tetanus parameters in rats with chronic alcohol intoxication. The experiments were carried out on 15 male Wistar rats that were divided into three groups for 5 animals in each: group I (control) and two groups in which was induced hind limbs acute muscles ischemia: group II - rats without alcoholic intoxication, group III - rats with chronic alcoholic intoxication. Strain measurement muscle mechanical activity were conducted in isometric mode under conditions of direct electrical muscular preparation stimulation. It is proved that ischemic m. soleus tetanic force in rats with chronic alcoholic intoxication in comparison with rats without alcoholic intoxication does not significant changes. But signifycantly increases the reaching tetanus peak time. It is shown that in rats without alcoholic intoxication and with chronic alcoholic intoxication in comparison with intact animals, significantly decreases the duration of ischemic m. soleus stabile force level. It is shoved significant changes of individual muscles contraction time course of ischemic m. soleus tetanus in this rats group in comparison to intact animal. It is shown that these changes influence on successive muscular contraction efficiency of frequency summation in ischemic m. soleus tetanus and their speed-power characteristics.

  9. Rat limb unloading - Soleus histochemistry, ultrastructure, and electromyography

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, G. R.; Bain, J. L. W.; Sedlak, F. R.; Sowa, T. E.

    1990-01-01

    The effects of hindlimb unloading on rat-soleus histochemisty, ultrastructure, and electromyogram (EMG) activity were investigated. It was found that, after 14 days of tail suspension, the area of type I and type IIa muscle fibers decreased by 63 and 47 percent, respectively, mainly due to the degradation of subsarcolemmal mitochondria and myofibrils. After 10 days, 3 percent of type IIa fibers exhibited segmental necrosis. After four days, video monitoring revealed abnormal plantar flexion of the hindfeet, which shortened the soleus working range. The EMG activity shifted from tonic to phasic, and aggregate activity decreased drastically after only seven days. The results indictate that the pathological changes in the soleus resulted from unloaded contractions, reduced use, compromised blood flow, and shortened working length.

  10. In vitro effect of adenosine agonist GR79236 on the insulin sensitivity of glucose utilisation in rat soleus and human rectus abdominus muscle.

    PubMed

    Webster, J M; Heseltine, L; Taylor, R

    1996-06-07

    The dose-response effects of a new adenosine agonist, GR79236, were examined in isolated rat soleus muscle strips and human rectus abdominus muscle strips. Effects on the insulin sensitivity of carbohydrate metabolism were examined, in particular upon insulin stimulated glycogen synthesis and glycolytic flux. In the presence of adenosine deaminase (ADA), GR79236 increased insulin sensitivity of pyruvate release from rat soleus muscle strips by 24% from 82.5 +/- 10.0 to 102.5 +/- 10.0 (P < 0.01), by 27% to 105.0 +/- 12.5 (P < 0.01) and by 24% to 102.5 +/- 10.0 (P < 0.01) nmol/25 mg per h at 0.1 and 10 microM GR79236, respectively. Rates of lactate release followed a similar but non-significant trend. Addition of GR79236 in the presence of ADA had no effect on rates of glycogen synthesis. Insulin stimulated rates of pyruvate or lactate release or of glycogen synthesis were unaffected by the addition of adenosine deaminase or GR79236 in human rectus abdominus muscle strips. Adenosine agonists may act indirectly to modulate insulin sensitivity of carbohydrate metabolism.

  11. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    PubMed

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  12. Skeletal muscle fiber type conversion during the repair of mouse soleus: potential implications for muscle healing after injury.

    PubMed

    Matsuura, Tetsuya; Li, Yong; Giacobino, Jean-Paul; Fu, Freddie H; Huard, Johnny

    2007-11-01

    We used a mouse model of cardiotoxin injury to examine fiber type conversion during muscle repair. We evaluated the soleus muscles of 37 wild-type mice at 2, 4, 8, and 12 weeks after injury. We also used antibodies (fMHC and sMHC) against fast and slow myosin heavy chain to classify the myofibers into three categories: fast-, slow-, and mixed (hybrid)-type myofibers (myofibers expressing both fMHC and sMHC). Our results revealed an increase in the percentage of slow-type myofibers and a decrease in the percentage of fast-type myofibers during the repair process. The percentage of hybrid-type myofibers increased 2 weeks after injury, then gradually decreased over the following 6 weeks. Similarly, our analysis of centronucleated myofibers showed an increase in the percentage of slow-type myofibers and decreases in the percentages of fast- and hybrid-type myofibers. We also investigated the relationship between myofiber type conversion and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The expression of both PGC-1alpha protein, which is expressed in both the nucleus and the cytoplasm of regenerating myofibers, and sMHC protein increased with time after cardiotoxin injection, but we observed no significant differential expression of fMHC protein in regenerating muscle fibers during muscle repair. PGC-1alpha-positive myofibers underwent fast to slow myofiber type conversion during the repair process. These results suggest that PGC-1alpha contributes to myofiber type conversion after muscle injury and that this phenomenon could influence the recovery of the injured muscle. (c) 2007 Orthopaedic Research Society.

  13. Unloading-induced slow-to-fast myosin shift in soleus muscle: nuclear MuRFs and calsarcin expression

    NASA Astrophysics Data System (ADS)

    Shenkman, Boris; Lomonosova, Yulia

    Exposure to actual and simulated microgravity is known to induce decrease in slow MyHC mRNA expression and increase in fast MyHC mRNAs expression. We supposed that altered expression of the calsarcin (CS) I and II (specific for type I and type II fibers respectively) may provide the control over myosin phenotype during unloading. We found that after 3 days of hindlimb unloading (HU) the content of CSII mRNA increased two-fold in rat soleus as compared to the cage controls. This level was maintained till the 7th day of the exposure and increased by more than 5-fold (as compared to controls) after two weeks of HU. In contrast to CSII, CSI mRNA expression didn’t change after 3 days of HU, but decreased more than 2-fold by the 7th and 14th day of HU. The increase of CSII RNA (in type II fibers) may be explained as the mechanism of stabilization of fast phenotype in all, but more important, in newly transformed type II fibers. At the same time, the decrease of CSI mRNA (in type I fibers) may be understood as counteracting the slow-to-fast transformation. Morriscot et al, (2010) demonstrated that calsarcin II expression decreased only in the double knockouts MuRF1-/MuRF2-. So, we hypothesized that CSII expression in unloaded soleus muscle might be associated with the cytoplasm-nucleus translocation of MuRF1 and MuRF2. We observed significant accumulation of MuRF1 and MuRF2 in the nuclear fraction after 3 days of HU. Thus the accumulation of MuRFs in myonuclei may promote the expression of CSII, necessary for stabilization of fast phenotype in the course of slow-to-fast shift in unloaded soleus muscle. We express our gratitude to Prof. S. Labeit (Mannheim) for kind presenting us the best antibodies against MuRF1 and MuRF2.

  14. Effects of hypergravity on gene levels in anti-gravity muscle and bone through the vestibular system in mice.

    PubMed

    Kawao, Naoyuki; Morita, Hironobu; Nishida, Kazuaki; Obata, Koji; Tatsumi, Kohei; Kaji, Hiroshi

    2017-09-07

    We recently reported that hypergravity with 3 g for 4 weeks affects muscle and bone through the vestibular system in mice. The purpose of this study was to investigate the effects of hypergravity with 2 g, which had no influence on circulating glucocorticoid level, on the gene levels in muscle and bone, as well as the roles of the vestibular system in those changes using vestibular lesioned (VL) mice. Hypergravity for 2 and 8 weeks or VL exerted little effects on the mRNA levels of muscle differentiation factors and myokines in the soleus muscle. Although hypergravity for 2 weeks significantly elevated alkaline phosphatase (ALP) and type I collagen mRNA levels in the tibia, VL significantly attenuated the levels of ALP mRNA enhanced by hypergravity. In conclusion, the present study suggests that a 2-g load for 2 weeks enhances osteoblast differentiation partly through the vestibular system in mice.

  15. Whole-body vibration induces distinct reflex patterns in human soleus muscle.

    PubMed

    Karacan, Ilhan; Cidem, Muharrem; Cidem, Mehmet; Türker, Kemal S

    2017-06-01

    The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9±5.3msvs. 43.8±3.6 and 44.1±4.2ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8±2.4ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Early Changes in Costameric and Mitochondrial Protein Expression with Unloading Are Muscle Specific

    PubMed Central

    Li, Ruowei; Linnehan, Richard M.; Castells, Josiane; Tesch, Per; Gustafsson, Thomas

    2014-01-01

    We hypothesised that load-sensitive expression of costameric proteins, which hold the sarcomere in place and position the mitochondria, contributes to the early adaptations of antigravity muscle to unloading and would depend on muscle fibre composition and chymotrypsin activity of the proteasome. Biopsies were obtained from vastus lateralis (VL) and soleus (SOL) muscles of eight men before and after 3 days of unilateral lower limb suspension (ULLS) and subjected to fibre typing and measures for costameric (FAK and FRNK), mitochondrial (NDUFA9, SDHA, UQCRC1, UCP3, and ATP5A1), and MHCI protein and RNA content. Mean cross-sectional area (MCSA) of types I and II muscle fibres in VL and type I fibres in SOL demonstrated a trend for a reduction after ULLS (0.05 ≤ P < 0.10). FAK phosphorylation at tyrosine 397 showed a 20% reduction in VL muscle (P = 0.029). SOL muscle demonstrated a specific reduction in UCP3 content (−23%; P = 0.012). Muscle-specific effects of ULLS were identified for linear relationships between measured proteins, chymotrypsin activity and fibre MCSA. The molecular modifications in costamere turnover and energy homoeostasis identify that aspects of atrophy and fibre transformation are detectable at the protein level in weight-bearing muscles within 3 days of unloading. PMID:25313365

  17. The involvement of transient receptor potential canonical type 1 in skeletal muscle regrowth after unloading-induced atrophy.

    PubMed

    Xia, Lu; Cheung, Kwok-Kuen; Yeung, Simon S; Yeung, Ella W

    2016-06-01

    Decreased mechanical loading results in skeletal muscle atrophy. The transient receptor potential canonical type 1 (TRPC1) protein is implicated in this process. Investigation of the regulation of TRPC1 in vivo has rarely been reported. In the present study, we employ the mouse hindlimb unloading and reloading model to examine the involvement of TRPC1 in the regulation of muscle atrophy and regrowth, respectively. We establish the physiological relevance of the concept that manipulation of TRPC1 could interfere with muscle regrowth processes following an atrophy-inducing event. Specifically, we show that suppressing TRPC1 expression during reloading impairs the recovery of the muscle mass and slow myosin heavy chain profile. Calcineurin appears to be part of the signalling pathway involved in the regulation of TRPC1 expression during muscle regrowth. These results provide new insights concerning the function of TRPC1. Interventions targeting TRPC1 or its downstream or upstream pathways could be useful for promoting muscle regeneration. Decreased mechanical loading, such as bed rest, results in skeletal muscle atrophy. The functional consequences of decreased mechanical loading include a loss of muscle mass and decreased muscle strength, particularly in anti-gravity muscles. The purpose of this investigation was to clarify the regulatory role of the transient receptor potential canonical type 1 (TRPC1) protein during muscle atrophy and regrowth. Mice were subjected to 14 days of hindlimb unloading followed by 3, 7, 14 and 28 days of reloading. Weight-bearing mice were used as controls. TRPC1 expression in the soleus muscle decreased significantly and persisted at 7 days of reloading. Small interfering RNA (siRNA)-mediated downregulation of TRPC1 in weight-bearing soleus muscles resulted in a reduced muscle mass and a reduced myofibre cross-sectional area (CSA). Microinjecting siRNA into soleus muscles in vivo after 7 days of reloading provided further evidence

  18. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  19. Proteome-wide Adaptations of Mouse Skeletal Muscles during a Full Month in Space.

    PubMed

    Tascher, Georg; Brioche, Thomas; Maes, Pauline; Chopard, Angèle; O'Gorman, Donal; Gauquelin-Koch, Guillemette; Blanc, Stéphane; Bertile, Fabrice

    2017-07-07

    The safety of space flight is challenged by a severe loss of skeletal muscle mass, strength, and endurance that may compromise the health and performance of astronauts. The molecular mechanisms underpinning muscle atrophy and decreased performance have been studied mostly after short duration flights and are still not fully elucidated. By deciphering the muscle proteome changes elicited in mice after a full month aboard the BION-M1 biosatellite, we observed that the antigravity soleus incurred the greatest changes compared with locomotor muscles. Proteomics data notably suggested mitochondrial dysfunction, metabolic and fiber type switching toward glycolytic type II fibers, structural alterations, and calcium signaling-related defects to be the main causes for decreased muscle performance in flown mice. Alterations of the protein balance, mTOR pathway, myogenesis, and apoptosis were expected to contribute to muscle atrophy. Moreover, several signs reflecting alteration of telomere maintenance, oxidative stress, and insulin resistance were found as possible additional deleterious effects. Finally, 8 days of recovery post flight were not sufficient to restore completely flight-induced changes. Thus in-depth proteomics analysis unraveled the complex and multifactorial remodeling of skeletal muscle structure and function during long-term space flight, which should help define combined sets of countermeasures before, during, and after the flight.

  20. Identification of Differentially Expressed Genes and Pathways for Myofiber Characteristics in Soleus Muscles between Chicken Breeds Differing in Meat Quality.

    PubMed

    Du, Y F; Ding, Q L; Li, Y M; Fang, W R

    2017-04-03

    In the modern chicken industry, fast-growing broilers have undergone strong artificial selection for muscle growth, which has led to remarkable phenotypic variations compared with slow-growing chickens. However, the molecular mechanism underlying these phenotypes differences remains unknown. In this study, a systematic identification of candidate genes and new pathways related to myofiber development and composition in chicken Soleus muscle (SOL) has been made using gene expression profiles of two distinct breeds: Qingyuan partridge (QY), a slow-growing Chinese breed possessing high meat quality and Cobb 500 (CB), a commercial fast-growing broiler line. Agilent cDNA microarray analyses were conducted to determine gene expression profiles of soleus muscle sampled at sexual maturity age of QY (112 d) and CB (42 d). The 1318 genes with at least 2-fold differences were identified (P < 0.05, FDR <0.05, FC ≥ 2) in SOL muscles of QY and CB chickens. Differentially expressed genes (DEGs) related to muscle development, energy metabolism or lipid metabolism processes were examined further in each breed based on Gene Ontology (GO) analysis, and 11 genes involved in these processes were selected for further validation studies by qRT-PCR. In addition, based on KEGG pathway analysis of DEGs in both QY and CB chickens, it was found that in addition to pathways affecting myogenic fibre-type development and differentiation (pathways for Hedgehog & Calcium signaling), energy metabolism (Phosphatidylinositol signaling system, VEGF signaling pathway, Purine metabolism, Pyrimidine metabolism) were also enriched and might form a network with pathways related to muscle metabolism to influence the development of myofibers. This study is the first stage in the understanding of molecular mechanisms underlying variations in poultry meat quality. Large scale analyses are now required to validate the role of the genes identified and ultimately to find molecular markers that can be

  1. Locomotor Treadmill Training Promotes Soleus Trophism by Mammalian Target of Rapamycin Pathway in Paraplegic Rats.

    PubMed

    do Espírito Santo, Caroline Cunha; Secco, Daniela Dal; Meireles, Anamaria; de Freitas, Gabriel Ribeiro; Bobinski, Franciane; Cunha, Mauricio Peña; Rodrigues, Ana Lúcia Severo; Swarowsky, Alessandra; Santos, Adair Roberto Soares; Ilha, Jocemar

    2018-06-01

    Assisted-treadmill training, may be helpful in promoting muscle mass preservation after incomplete spinal cord injury (SCI). However, biological mechanism involved in this process is still not fully understood. This study investigated the effects of locomotor treadmill training on muscle trophism mediated by protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) in paraplegic rats. Adult female Wistar rats underwent an incomplete thoracic SCI induced by compression using an aneurysm clip. After 7 days, injured animals started a 3-week locomotor treadmill training with body weight-support and manual step help. Soleus trophism was measured by muscle weight and transverse myofiber cross-sectional area (CSA). An enzyme-linked immunosorbent assay (ELISA) and western blot analysis were used to detect brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), Akt, mTOR and p70S6K in paretic soleus. Trained animals did not show locomotor improved, but present an increase in muscle weight and myofiber CSA. Furthermore, the levels of Akt, p70S6K phosphorylation, mTOR and TrkB receptor were increased by training in soleus. In contrast, muscle BDNF levels were significantly reduced after training. The results suggest locomotor treadmill training partially reverts/prevents soleus muscle hypotrophy in rats with SCI. Furthermore, this study provided the first evidence that morphological muscle changes were caused by Akt/mTOR/p70S6K signaling pathway and TrkB up-regulation, which may increase the sensitivity of muscle, reducing autocrine signaling pathway demand of BDNF for cell growth.

  2. Tenotomy of m.soleus antagonists prevents the changes in fiber type characteristics and sarcomeric cytoskeletal proteins in unloaded rats

    NASA Astrophysics Data System (ADS)

    Moukhina, Alexandra; Ardabievskaya, Anna; Vikhlyantsev, Ivan; Podlubnaya, Zoya; Nemirovskaya, Tatiana; Shenkman, Boris

    2005-08-01

    It is known that activity of postural extensors (m. soleus) decreases and activity of flexors (m. tibialis anterior) increases under unloading conditions. We have tested the hypothesis supposing that increased flexor activities during unloading exert suppressive influence on postural extensor activities and thus lead to dramatic changes in fiber size, MHC expression, sarcomeric proteins content in m.soleus. We have inactivated hindlimb flexor muscles (m.soleus antagonists) by bilateral tenotomy. 20 male Wistar rats were divided on 3 groups: cage control (C), hindlimb suspension for 14 days (HS), tenotomy of hindlimb flexor muscles with 14 days hindlimb suspension afterwards (HST). Several soleus muscle fiber characteristics decreased significantly in HS group (p<0.05) as compared with C group: cross sectional area (CSA) of type I muscle fibers, titin/MyHC ratio and nebulin/MyHC ratio. MyHC isoform pattern shifted slow-to-fast significantly. NFATc1 content increased in nuclear protein extract of m. soleus in HS group. None of these parameters was significantly different in HST group from those of C group. It has been concluded that the tenotomy of flexors under hindlimb suspension prevents atrophy of type I muscle fibers, decrease the degradation of titin and nebulin and prevent slow-to-fast shift of fiber MyHC isoform pattern, possibly through prevention of increase NFATc1 content in muscle fiber nuclear protein extract. Therefore, suppressive influence of increased flexor activity could be one of mechanisms that lead to the changes in m. soleus under unloading conditions. The work was supported by RFBR grants: 02-04-50025, 03- 04-48487 and the special program of RAS "Integration mechanisms of functional control in the living system".

  3. Effects of postural and voluntary muscle contraction on modulation of the soleus H reflex by transcranial magnetic stimulation.

    PubMed

    Guzmán-López, Jessica; Selvi, Aikaterini; Solà-Valls, Núria; Casanova-Molla, Jordi; Valls-Solé, Josep

    2015-12-01

    Modulation of spinal reflexes depends largely on the integrity of the corticospinal tract. A useful method to document the influence of descending tracts on reflexes is to examine the effects of transcranial magnetic stimulation (TMS) on the soleus H reflex elicited by posterior tibial nerve electrical stimuli (PTS). In 12 healthy volunteers, we investigated how postural or voluntary muscle contraction modified such descending modulation. We first characterized the effects of TMS at 95 % of motor threshold for leg responses on the H reflex elicited by a preceding PTS at inter-stimuli intervals (ISIs) between 0 and 120 ms at rest and, then, during voluntary plantar flexion (pf), dorsal flexion (df), and standing still (ss). During pf, there was an increase in the facilitation of the H reflex at ISIs 0-20 ms. During df, there were no effects of TMS on the H reflex. During ss, there was inhibition at ISIs 40-60 ms. Our observations suggest that muscle contraction prevails over the baseline effects of TMS on the soleus H reflex. While contraction of the antagonist (df) suppressed most of the effects, contraction of the agonist had different effects depending on the type of activity (pf or ss). The characterization of the interaction between descending corticospinal volleys and segmental peripheral inputs provides useful information on motor control for physiological research and further understanding of the effects of spinal cord lesions.

  4. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  5. Novel roles of FKBP5 in muscle alteration induced by gravity change in mice.

    PubMed

    Shimoide, Takeshi; Kawao, Naoyuki; Tamura, Yukinori; Morita, Hironobu; Kaji, Hiroshi

    2016-10-21

    Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Loss of cIAP1 attenuates soleus muscle pathology and improves diaphragm function in mdx mice

    PubMed Central

    Enwere, Emeka K.; Boudreault, Louise; Holbrook, Janelle; Timusk, Kristen; Earl, Nathalie; LaCasse, Eric; Renaud, Jean-Marc; Korneluk, Robert G.

    2013-01-01

    The cellular inhibitor of apoptosis 1 (cIAP1) protein is an essential regulator of canonical and noncanonical nuclear factor κB (NF-κB) signaling pathways. NF-κB signaling is known to play important roles in myogenesis and degenerative muscle disorders such as Duchenne muscular dystrophy (DMD), but the involvement of cIAP1 in muscle disease has not been studied directly. Here, we asked whether the loss of cIAP1 would influence the pathology of skeletal muscle in the mdx mouse model of DMD. Double-mutant cIAP1−/−;mdx mice exhibited reduced muscle damage and decreased fiber centronucleation in the soleus, compared with single-mutant cIAP1+/+;mdx mice. This improvement in pathology was associated with a reduction in muscle infiltration by macrophages and diminished expression of inflammatory cytokines such as IL-6 and tumor necrosis factor-α. Furthermore, the cIAP1−/−;mdx mice exhibited reduced serum creatine kinase, and improved exercise endurance associated with improved exercise resilience by the diaphragm. Mechanistically, the loss of cIAP1 was sufficient to drive constitutive activation of the noncanonical NF-κB pathway, which led to increased myoblast fusion in vitro and in vivo. Collectively, these results show that the loss of cIAP1 protects skeletal muscle from the degenerative pathology resulting from systemic loss of dystrophin. PMID:23184147

  7. Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Bain, J. L.; Thompson, J. L.; Fitts, R. H.; Widrick, J. J.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.

    1998-01-01

    Previously we reported that, after 17-day bed rest unloading of 8 humans, soleus slow fibers atrophied and exhibited increased velocity of shortening without fast myosin expression. The present ultrastructural study examined fibers from the same muscle biopsies to determine whether decreased myofilament packing density accounted for the observed speeding. Quantitation was by computer-assisted morphometry of electron micrographs. Filament densities were normalized for sarcomere length, because density depends directly on length. Thick filament density was unchanged by bed rest. Thin filaments/microm2 decreased 16-23%. Glycogen filled the I band sites vacated by filaments. The percentage decrease in thin filaments (Y) correlated significantly (P < 0.05) with the percentage increase in velocity (X), (Y = 0.1X + 20%, R2 = 0.62). An interpretation is that fewer filaments increases thick to thin filament spacing and causes earlier cross-bridge detachment and faster cycling. Increased velocity helps maintain power (force x velocity) as atrophy lowers force. Atrophic muscles may be prone to sarcomere reloading damage because force/microm2 was near normal, and force per thin filament increased an estimated 30%.

  8. Antigravity in F( R) and Brans-Dicke theories

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.; Karagiannakis, N.

    2014-12-01

    We study antigravity in F( R)-theory originating scalar-tensor theories and also in Brans-Dicke models without cosmological constant. For the F( R) theory case, we obtain the Jordan frame antigravity scalar-tensor theory by using a variant of the Lagrange multipliers method and we numerically study the time dependent effective gravitational constant. As we shall demonstrate in detail by using some viable F( R) models, although the initial F( R) models have no antigravity, their scalar-tensor counterpart theories might or not have antigravity, a fact mainly depending on the parameter that characterizes antigravity. Similar results hold true in the Brans-Dicke model, which we also studied numerically. In addition, regarding the Brans-Dicke model we also found some analytic cosmological solutions. Since antigravity is an unwanted feature in gravitational theories, our findings suggest that in the case of F( R) theories, antigravity does not occur in the real world described by the F( R) theory, but might occur in the Jordan frame scalar-tensor counterpart of the F( R) theory, and this happens under certain circumstances. The central goal of our study is to present all different cases in which antigravity might occur in modified gravity models.

  9. Effect of afferent feedback and central motor commands on soleus H-reflex suppression during arm cycling.

    PubMed

    Hundza, S R; de Ruiter, Geoff C; Klimstra, M; Zehr, E Paul

    2012-12-01

    Suppression of soleus H-reflex amplitude in stationary legs is seen during rhythmic arm cycling. We examined the influence of various arm-cycling parameters on this interlimb reflex modulation to determine the origin of the effect. We previously showed the suppression to be graded with the frequency of arm cycling but not largely influenced by changes in peripheral input associated with crank length. Here, we more explicitly explored the contribution of afferent feedback related to arm movement on the soleus H-reflex suppression. We explored the influence of load and rate of muscle stretch by manipulating crank-load and arm-muscle vibration during arm cycling. Furthermore, internally driven ("Active") and externally driven ("Passive") arm cycling was compared. Soleus H-reflexes were evoked with tibial nerve stimulation during stationary control and rhythmic arm-cycling conditions, including: 1) six different loads; 2) with and without vibration to arm muscles; and 3) Active and Passive conditions. No significant differences were seen in the level of suppression between the different crank loads or between conditions with and without arm-muscle vibration. Furthermore, in contrast to the clear effect seen during active cycling, passive arm cycling did not significantly suppress the soleus H-reflex amplitude. Current results, in conjunction with previous findings, suggest that the afferent feedback examined in these studies is not the primary source responsible for soleus H-reflex suppression. Instead, it appears that central motor commands (supraspinal or spinal in origin) associated with frequency of arm cycling are relatively more dominant sources.

  10. [A study on the relation between stomatognathic system and the systemic condition, concerning the influence of experimental occlusal interference on upright posture, particularly on gravity fluctuation and the antigravity muscles].

    PubMed

    Miyata, T

    1990-06-01

    The purpose of this study is to reveal the relation between stomatognathic system and the systemic condition. In the present study, experimental occlusal interference was given to the first molar on main mastication side of 6 healthy subjects and the influence on the upright posture was evaluated through simultaneous measurements of changes in activity of antigravity muscles via electromyography, other than the measurement of loci of the gravity fluctuation for stabilograph before and after the interference was provided. The following results were obtained, 1. Loci of gravity fluctuation 1) All parameters tended increase 24 hours after the interference was provided. 2) The decreasing trend was noted 24 hours after the interference was removed. 3) At one week after the interference was removed all analysis items tended to restore to the normal range. 2. Activity of antigravity muscles In some of the subjects, the muscular activity showed the same trend as the changes of analysis items of gravity fluctuation. 3. The above results suggest that the evaluation of the loci of the gravity fluctuation may be helpful to assess the therapeutic effect of malocclusion.

  11. Key Markers of mTORC1-Dependent and mTORC1-Independent Signaling Pathways Regulating Protein Synthesis in Rat Soleus Muscle During Early Stages of Hindlimb Unloading.

    PubMed

    Mirzoev, Timur; Tyganov, Sergey; Vilchinskaya, Natalia; Lomonosova, Yulia; Shenkman, Boris

    2016-01-01

    The purpose of the study was to assess the amount of rRNA and phosphorylation status of the key markers of mTORC1-dependent (70s6k, 4E-BP1) and mTORC1-independent (GSK-3β, AMPK) signaling pathways controlling protein synthesis in rat soleus during early stages of mechanical unloading (hindlimb suspension (HS) for 1-, 3- and 7 days). The content of the key signaling molecules of various anabolic signaling pathways was determined by Western-blotting. The amount of 28S rRNA was evaluated by RT-PCR. The rate of protein synthesis was assessed using in-vivo SUnSET technique. HS for 3 and 7 days induced a significant (p<0.05) decrease in the rate of global protein synthesis in soleus muscle in comparison with control. HS within 24 hours resulted in a significant (p<0.05) decrease in p-4E-BP1 content, p-AMPK content and increase in p-p70s6k content in rat soleus muscle. Following three days of HS the content of p-AKT was decreased (p<0.05). After 7 days of HS the phosphorylation level of AKT and GSK-3beta was significantly reduced (p<0.05) compared to control. We also observed a significant decrease in the amount of 28S rRNA in rat soleus following 1, 3 and 7 days of HS. Taken together, the results of our study suggest that a decline in the global rate of protein synthesis in rat soleus during early stages of simulated microgravity is associated with impaired ribosome biogenesis as well as reduced activity of mTORC1-independent signaling pathways. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. The Superheavy Elements and Anti-Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasovski, Petar K.

    2004-02-04

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate thesemore » capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.« less

  13. The Superheavy Elements and Anti-Gravity

    NASA Astrophysics Data System (ADS)

    Anastasovski, Petar K.

    2004-02-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking.

  14. Antigravity hills are visual illusions.

    PubMed

    Bressan, Paola; Garlaschelli, Luigi; Barracano, Monica

    2003-09-01

    Antigravity hills, also known as spook hills or magnetic hills, are natural places where cars put into neutral are seen to move uphill on a slightly sloping road, apparently defying the law of gravity. We show that these effects, popularly attributed to gravitational anomalies, are in fact visual illusions. We re-created all the known types of antigravity spots in our laboratory using tabletop models; the number of visible stretches of road, their slant, and the height of the visible horizon were systematically varied in four experiments. We conclude that antigravity-hill effects follow from a misperception of the eye level relative to gravity, caused by the presence of either contextual inclines or a false horizon line.

  15. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  16. Aerobic anti-gravity exercise in patients with Charcot-Marie-Tooth disease types 1A and X: A pilot study.

    PubMed

    Knak, Kirsten L; Andersen, Linda K; Vissing, John

    2017-12-01

    Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy associated with impaired walking capacity. Some patients are too weak in the lower extremity muscles to walk at gravity with sufficient intensity or duration to gain benefit. The aim was to investigate the effect of aerobic anti-gravity exercise in weak patients with CMT 1A and X. Five adult patients performed moderate-intensity aerobic anti-gravity exercise 3/week for 10 weeks. There was a significant positive difference in Berg balance scale and postural stability test between test occasions, and walking distance in the 6-min walk test trended to increase. The study indicates that the anti-gravity treadmill training of patients with CMT should be pursued in larger CMT cohorts.

  17. MRI detection of soleus muscle injuries in professional football players.

    PubMed

    Pezzotta, G; Querques, G; Pecorelli, A; Nani, R; Sironi, S

    2017-11-01

    To describe magnetic resonance imaging (MRI) characteristics of soleus muscle injuries in symptomatic professional football players stratified according to both the Munich consensus statement and the British Athletics Muscle Injury Classification (BAMIC), and to investigate the association between specific MRI features and the "return to play" (RTP). Professional football players with an episode of acute posterior calf pain and impaired function, subsequent to sports activity, underwent ultrasound followed by MRI examination reviewed by two different radiologists with more than 10 years of experience in the musculoskeletal system. MRI features and RTP outcome were evaluated for all types of injuries. During a 36-month period, a total of 20 professional football players were evaluated. According to the Munich consensus, 11 were type 3A, 8 were type 3B, and 1 was type 4, whereas according to the BAMIC, 11 lesions were considered grade 1, 4 grade 2, 4 grade 3, and 1 grade 4. RTP data were available for all patients (mean 3.3 ± 1.6 weeks). Both the Munich consensus and the BAMIC correlated with RTP (Spearman correlation = 0.982 and p < 0.0001 and 0.886 and p < 0.0001 respectively). Extension of edema was an independent prognostic factor for RTP in two different models of multivariate regression analysis (p = 0.044 model A; p = 0.031 model B). The Munich consensus and BAMIC grading systems are useful tools for defining the patient's prognosis and proper rehabilitation time after injury. The MRI feature that we should carefully look for is the extension of edema, as it seems to significantly affect the RTP.

  18. Possible Role of Non-Muscle Alpha-Actinins in Muscle Cell Mechanosensitivity

    PubMed Central

    Ogneva, Irina V.; Biryukov, Nikolay S.; Leinsoo, Toomas A.; Larina, Irina M.

    2014-01-01

    The main hypothesis suggested that changes in the external mechanical load would lead to different deformations of the submembranous cytoskeleton and, as a result, dissociation of different proteins from its structure (induced by increased/decreased mechanical stress). The study subjects were fibers of the soleus muscle and cardiomyocytes of Wistar rats. Changes in external mechanical conditions were reconstructed by means of antiorthostatic suspension of the animals by their tails for 6, 12, 18, 24 and 72 hours. Transversal stiffness was measured by atomic force microscopy imaging; beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 levels in membranous and cytoplasmic fractions were quantified by Western blot analysis; expression rates of the corresponding genes were studied using RT-PCR. Results: In 6 hours, alpha-actinin 1 and alpha-actinin 4 levels decreased in the membranous fraction of proteins of cardiomyocytes and soleus muscle fibers, respectively, but increased in the cytoplasmic fraction of the abovementioned cells. After 6–12 hours of suspension, the expression rates of beta-, gamma-actin, alpha-actinin 1 and alpha-actinin 4 were elevated in the soleus muscle fibers, but the alpha-actinin 1 expression rate returned to the reference level in 72 hours. After 18–24 hours, the expression rates of beta-actin and alpha-actinin 4 increased in cardiomyocytes, while the alpha-actinin 1 expression rate decreased in soleus muscle fibers. After 12 hours, the beta- and gamma-actin content dropped in the membranous fraction and increased in the cytoplasmic protein fractions from both cardiomyocytes and soleus muscle fibers. The stiffness of both cell types decreased after the same period of time. Further, during the unloading period the concentration of nonmuscle actin and different isoforms of alpha-actinins increased in the membranous fraction from cardiomyocytes. At the same time, the concentration of the abovementioned proteins decreased in the soleus

  19. Effect of altered thyroid state on the in situ mechanical properties of adult cat soleus

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Hodgson, J. A.; Grossman, E. J.; Edgerton, V. R.

    2003-01-01

    To determine the responsiveness of cat hindlimb muscles to thyroid manipulation, adult female cats were made hypothyroid (thyroidectomy plus tapazole treatment), hyperthyroid (synthroid pellets), or maintained euthyroid. After 4 months, the hypothyroid soleus had slower time-to-peak (TPT, 80%) and half-relaxation (HRT) times, whereas the hyperthyroid soleus had faster TPT (20%) and HRT than euthyroid cats. The tension at low stimulation frequencies (5-15 Hz) was higher in hypothyroid and lower in hyperthyroid cats compared to euthyroid cats. Muscle weight, maximum twitch and tetanic (Po) tensions, and maximum rates of shortening (Vmax) were similar across groups. The soleus of hypothyroid cats was more fatigable than normal. The myosin heavy chain (MHC) composition, based on gel electrophoresis, was unaffected by thyroid hormone manipulation. Based on the reaction of monoclonal antibodies for specific MHCs, some fast fibers in the hypothyroid cats coexpressed developmental MHC. These data indicate that 4 months of an altered thyroid state result in changes in the isometric twitch speed properties of the cat soleus, but not the tension-related or isotonic properties. Further, a chronic decrease in thyroid hormone had a greater impact than a chronic increase in thyroid hormone on the mechanical properties of the adult cat soleus. Copyright 2003 S. Karger AG, Basel.

  20. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    NASA Astrophysics Data System (ADS)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  1. Early alterations in soleus GLUT-4, glucose transport, and glycogen in voluntary running rats

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Halseth, Amy E.

    1994-01-01

    Voluntary wheel running (WR) by juvenile female rats was used as a noninterventional model of soleus muscle functional overload to study the regulation of insulin-stimulated glucose transport activity by the glucose transporter (GLUT-4 isoform) protein level and glycogen concentration. Soleus total protein content was significantly greater (+18%;P greater than 0.05) than in age-matched controls after 1 wk of WR, and this hypertrophic response continued in weeks 2-4 (+24-32%). GLUT-4 protein was 39% greater than in controls in 1-wk WR soleus, and this adaptation was accompanied by a similar increase in in vitro insulin-stimulated glucose transport activity(+29%). After 2 and 4 wk of WR, however, insulin-stimulated glucose transport activity had returned to control levels, despite a continued elevation (+25-28%) of GLUT-4 protein. At these two time points, glycogen concentration was significantly enhanced in WR soleus (+21-42%), which coincided with significant reductions in glycogen synthase activity ratios (-23 to-41%). These results indicate that, in this model of soleus muscle functional overload, the GLUT-4 protein level may initially regulate insulin-stimulated glucose transport activity in the absence of changes in other modifying factors. However,this regulation of glucose transport activity by GLUT-4 protein may be subsequently overridden by elevated glycogen concentration.

  2. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals.

    PubMed

    Maupas, Eric; Dyer, Joseph-Omer; Melo, Sibele de Andrade; Forget, Robert

    2017-09-01

    Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic

  3. The effect of obesity on the contractile performance of isolated mouse soleus, EDL, and diaphragm muscles.

    PubMed

    Tallis, Jason; Hill, Cameron; James, Rob S; Cox, Val M; Seebacher, Frank

    2017-01-01

    Obesity affects the major metabolic and cellular processes involved in skeletal muscle contractility. Surprisingly, the effect of obesity on isolated skeletal muscle performance remains unresolved. The present study is the first to examine the muscle-specific changes in contractility following dietary-induced obesity using an isolated muscle work-loop (WL) model that more closely represents in vivo muscle performance. Following 16-wk high-calorific feeding, soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) were isolated from female (CD-1) mice, and contractile performance was compared against a lean control group. Obese SOL produced greater isometric force; however, isometric stress (force per unit muscle area), absolute WL power, and normalized WL power (watts per kilogram muscle mass) were unaffected. Maximal isometric force and absolute WL power of the EDL were similar between groups. For both EDL and DIA, isometric stress and normalized WL power were reduced in the obese groups. Obesity caused a significant reduction in fatigue resistance in all cases. Our findings demonstrate a muscle-specific reduction in contractile performance and muscle quality that is likely related to in vivo mechanical role, fiber type, and metabolic profile, which may in part be related to changes in myosin heavy chain expression and AMP-activated protein kinase activity. These results infer that, beyond the additional requirement of moving a larger body mass, functional performance and quality of life may be further limited by poor muscle function in obese individuals. As such, a reduction in muscle performance may be a substantial contributor to the negative cycle of obesity. The effect of obesity on isolated muscle function is surprisingly underresearched. The present study is the first to examine the effects of obesity on isolated muscle performance using a method that more closely represents real-world muscle function. This work uniquely establishes a muscle

  4. Scaling of muscle architecture and fiber types in the rat hindlimb.

    PubMed

    Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L

    2008-07-01

    The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.

  5. Impact of C 60 fullerene on the dynamics of force-speed changes in soleus muscle of rat at ischemia-reperfusion injury.

    PubMed

    Nozdrenko, D M; Bogutska, K I; Prylutskyy, Yu I; Korolovych, V F; Evstigneev, M P; Ritter, U; Scharff, P

    2015-01-01

    The effect of C60 fullerene nanoparticles (30-90 nm) on dynamics of force response development to stimulated soleus muscle of rat with ischemic pathology, existing in muscle during the first 5 hours and first 5 days after 2 hours of ischemia and further reperfusion, was investigated using the tensometric method. It was found that intravenous and intramuscular administration of C60 fullerene with a single dose of 1 mg/kg exert different therapeutic effects dependent on the investigated macroparameters of muscle contraction. The intravenous drug administration was shown to be the most optimal for correction of the velocity macroparameters of contraction due to muscle tissue ischemic damage. In contrast, the intramuscular administration displays protective action with respect to motions associated with generation of maximal force response or continuous contractions elevating the level of muscle fatigue. Hence, C60 fullerene, being a strong antioxidant, may be considered as a promising agent for effective therapy of pathological states of the muscle system caused by pathological action of free radical processes.

  6. Rat soleus muscle satellite cells during the recovery after gravitational unloading

    NASA Astrophysics Data System (ADS)

    Turtikova, Olga; Shenkman, Boris; Altaeva, Erzhena; Leinsoo, Toomas

    In this study the attempt was made to assess alterations of rat soleus satellite cell (SC) population during muscle regrowth after 14-day gravitational unloading (using the hindlimb suspension model). Myofiber size increases during the recovery period. SCs are supposed to participate in muscle growth by fusion with myofibers and supplying them with new myonuclei [Mitchell PO, Pavlath GK, 2001; Oishi Y., 2008]. Other points of view are known about SC participation in the recovery of atrophied muscle mass during the readaptation period [Bruusgaard J.C. et al., 2011; Jackson JR et al., 2012]. After 2 weeks of hindlimb suspension mki67 expression was fivefold lower as compared to control animals and increased gradually up to 28 times by the day 7 of reloading. Cdh15 was decreased after hindlimb unloading and rose from the 1st day of reloading. The expression reached control level to the day 7th of reloading. Cellular response was going on concurrently with the spike of IGF-1 blood level and the increase in muscle IGF-1 concentration. It is possible that in the early days of reloading period differentiation and fusion of satellite cells which were active by the end of hindlimb suspension occurred. Satellite cell incorporation was assessed by counting the amount of BrdU+ myonuclei under myofiber dystrophin layer. It came more intensively in the 1st day of readaptation. It is in accordance with the 4,5 time increase in myogenin expression as compared to hindlimb suspended animals detected at the same time point. Myogenin expression 3 fold decreased by 3rd day of readaptation. We observed only the tendency of resizing but no significant changes in in myonuclear domain size. The number of myonuclei per myofiber cross section was decreased after hindlimb suspension and was not restored by the day 14th of readaptation. Cdh15 and myogenin expression at some extent stabilized after 7 days of readaptation, but high mki67 level pointed to intensive proliferation, which could

  7. β2-Adrenoceptors and non-β-adrenoceptors mediate effects of BRL37344 and clenbuterol on glucose uptake in soleus muscle: studies using knockout mice

    PubMed Central

    Ngala, Robert A; O'Dowd, Jacqueline; Wang, Steven J; Stocker, Claire; Cawthorne, Michael A; Arch, Jonathan RS

    2009-01-01

    Background and purpose: In previous work, 10 pM BRL37344 and 10 pM clenbuterol stimulated glucose uptake in mouse soleus muscle. Ten nM BRL37344 also stimulated uptake but 100 nM clenbuterol inhibited uptake. Antagonist studies suggested that the opposite effects of 10 nM BRL37344 and 100 nM clenbuterol are mediated by the β2-adrenoceptor. BRL37344 and clenbuterol have been studied in muscles that lack β3-, β2- or all three β-adrenoceptors. Effects of β-adrenoceptor antagonists on responses to the agonists have been studied further using muscles from wild-type mice. Experimental approach: Soleus muscles of wild-type or β-adrenoceptor knockout mice were incubated with 2-deoxy[1-14C]-glucose, and β-adrenoceptor ligands. Formation of 2-deoxy[1-14C]-glucose-6-phosphate was measured. Key results: Concentration–response relationships were similar for BRL37344 and clenbuterol in normal muscle and muscle lacking β3-adrenoceptors. Ten pM BRL37344 and clenbuterol stimulated glucose uptake in muscle lacking β2-adrenoceptors or all three β-adrenoceptors, but 10 nM BRL37344 did not stimulate uptake in either case, and 100 nM clenbuterol stimulated, rather than inhibited, uptake in muscle lacking β2-adrenoceptors. One hundred nM clenbuterol also stimulated glucose uptake in normal muscle when β2-adrenoceptors were blocked with ICI118551, and this was not prevented by antagonism of β1- or β3-adrenoceptors. Conclusions and implications: Ten nM BRL37344 and 100 nM clenbuterol have opposite effects on glucose uptake but both effects are mediated by the β2-adrenoceptor – apparently an example of agonist-directed signalling. Ten pM BRL37344, 10 pM clenbuterol and 100 nM clenbuterol in the presence of ICI118551 stimulate glucose uptake via β-adrenoceptor-independent mechanisms, demonstrating unknown properties for the agonists. PMID:19912225

  8. [Counteracting effects of intermittent head-up tilt on simulated-weightlessness induced atrophy of anti-gravity muscles].

    PubMed

    Liu, C; Zhang, L F; Zhang, L N; Ni, H Y; Zhang, Y Q; Sun, L

    2000-12-01

    Objective. To study the efficacy of intermittent + Gz (45 degrees head-up tilt, HUT) exposures in preventing or alleviating atrophic changes in hind limb muscles induced by simulated weightlessness. Method. Male Sprague-Dawley (SD) rats were assigned randomly to one of three groups: simultaneous control (CON), simulated weightlessness (SUS), and SUS plus 6 h/d HUT (SUS + HUT). Muscles examined included soleus (SOL), medial gastrocnemius (correction from grastrocnemius) (MG), lateral gastrocnemius (LG) and extensor digitorum longus (EDL). Sections were treated with an adenosinetriphosphatase (ATPase) stain or alkaline phosphatase stain. The cross-sectional areas (CSA) of fibers, the relative proportion of type I fiber and the ratio of capillaries/fibers (C/F) were measured using Leica image analysis system. Result. Compared with CON, the wet weight of hind limb muscles in SUS were significantly reduced. The changes of wet weight in different groups were various. The C/F ratios of all muscles were significantly reduced. SUS + HUT rats showed significant increases in SOL and MG wet weight, and the relative counter-effects of intermittent HUT were 93.4% and 34.8%, respectively. In SUS + HUT group, the CSA of both type I and II fibers and relative proportion of type I fibers were completely recovered in SOL, and partially recovered in MG, while the counter-effects were much less obvious in the fibers of LG and EDL. However, HUT resulted in a significant recovery of the C/F ratios in all muscles. Conclusion. The present study demonstrated that intermittent HUT is effective in counteracting the atrophy induced by simulated weightlessness. The result that reactivity to HUT varied among different muscles suggests that the intermittent artificial gravity should be complemented with other countermeasures.

  9. Absence of a growth hormone effect on rat soleus atrophy during a 4-day spaceflight

    NASA Technical Reports Server (NTRS)

    Jiang, Bian; Roy, Roland R.; Navarro, Christine; Edgerton, V. R.

    1993-01-01

    The effect of a 4-day-long spaceflight on the size and the enzyme properties of soleus fibers of rats and the effects of exogenous growth hormone (GH) on the atrophic response of the soleus muscle were investigated in four groups of rats: (1) control, (2) control plus GH treatment, (3) flight, and (4) flight plus GH treatment. Results showed that the fiber size and the type of myosin heavy chain expressed fibers (but not the metabolic properties) of the soleus were affected by four days of weightlessness and that the effects were not ameliorated by the administration of growth hormone.

  10. Distinct muscle apoptotic pathways are activated in muscles with different fiber types in a rat model of critical illness myopathy.

    PubMed

    Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E

    2015-06-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.

  11. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    PubMed

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Feed artery role in blood flow control to rat hindlimb skeletal muscles.

    PubMed Central

    Williams, D A; Segal, S S

    1993-01-01

    1. Vasomotor tone and reactivity were investigated in feed arteries of the extensor digitorum longus and soleus muscles. Feed arteries are located external to the muscle and give rise to the microcirculation within each muscle. Resting diameter was smaller in feed arteries of the soleus muscle. 2. Feed arteries of both muscles dilated to similar peak values with sodium nitroprusside. 3. Micropressure measurements demonstrated resistance to blood flow in the feed arteries supplying both muscles. Feed arteries supplying soleus muscle demonstrated greater resistance to blood flow compared to feed arteries of extensor digitorum longus muscle. 4. Greater resting tone and larger pressure drop for feed arteries of soleus muscle suggest greater range of flow control compared to feed arteries of extensor digitorum longus muscle. 5. In both muscles, feed artery diameter increased with muscle contraction (functional dilatation) and in response to transient ischaemia (reactive dilatation). The magnitude of these responses varied between muscles. 6. Feed arteries are active sites of blood flow control in extensor digitorum longus and soleus muscles of the rat. These muscles differ in fibre type and recruitment properties. Differences in feed artery reactivity may contribute to differences in blood flow between these muscles observed at rest and during exercise. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8246199

  13. Efflux of creatine kinase from isolated soleus muscle depends on age, sex and type of exercise in mice.

    PubMed

    Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras

    2015-06-01

    Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h(-1), respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h(-1)). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h(-1), respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key pointsMuscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches.Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity.Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice.

  14. Efflux of Creatine Kinase from Isolated Soleus Muscle Depends on Age, Sex and Type of Exercise in Mice

    PubMed Central

    Baltusnikas, Juozas; Venckunas, Tomas; Kilikevicius, Audrius; Fokin, Andrej; Ratkevicius, Aivaras

    2015-01-01

    Elevated plasma creatine kinase (CK) activity is often used as an indicator of exercise-induced muscle damage. Our aim was to study effects of contraction type, sex and age on CK efflux from isolated skeletal muscles of mice. The soleus muscle (SOL) of adult (7.5-month old) female C57BL/6J mice was subjected to either 100 passive stretches, isometric contractions or eccentric contractions, and muscle CK efflux was assessed after two-hour incubation in vitro. SOL of young (3-month old) male and female mice was studied after 100 eccentric contractions. For adult females, muscle CK efflux was larger (p < 0.05) after eccentric contractions than after incubation without exercise (698 ± 344 vs. 268 ± 184 mU·h−1, respectively), but smaller (p < 0.05) than for young females after the same type of exercise (1069 ± 341 mU·h−1). Eccentric exercise-induced CK efflux was larger in muscles of young males compared to young females (2046 ± 317 vs 1069 ± 341 mU · h−1, respectively, p < 0.001). Our results show that eccentric contractions induce a significant increase in muscle CK efflux immediately after exercise. Isolated muscle resistance to exercise-induced CK efflux depends on age and sex of mice. Key points Muscle lengthening contractions induce the highest CK efflux in vitro compared with similar protocol of isometric contractions or passive stretches. Muscle CK efflux in vitro is applicable in studying changes of sarcolemma permeability/integrity, a proxy of muscle damage, in response to muscle contractile activity. Isolated muscle resistance to exercise-induced CK efflux is greater in female compared to male mice of young age and is further increased in adult female mice. PMID:25983588

  15. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. Copyright © 2015 the American Physiological Society.

  16. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.

    PubMed Central

    Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A

    1990-01-01

    1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions. PMID:2268261

  17. Activation of plantar flexor muscles is constrained by multiple muscle synergies rather than joint torques

    PubMed Central

    Suzuki, Takahito; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-01-01

    Behavioral evidence has suggested that a small number of muscle synergies may be responsible for activating a variety of muscles. Nevertheless, such dimensionality reduction may also be explained using the perspective of alternative hypotheses, such as predictions based on linear combinations of joint torques multiplied by corresponding coefficients. To compare the explanatory capacity of these hypotheses for describing muscle activation, we enrolled 12 male volunteers who performed isometric plantar flexor contractions at 10–100% of maximum effort. During each plantar flexor contraction, the knee extensor muscles were isometrically contracted at 0%, 50%, or 100% of maximum effort. Electromyographic activity was recorded from the vastus lateralis, medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus muscles and quantified using the average rectified value (ARV). At lower plantar flexion torque, regression analysis identified a clear linear relationship between the MG and soleus ARVs and between the MG and LG ARVs, suggesting the presence of muscle synergy (r2 > 0.65). The contraction of the knee extensor muscles induced a significant change in the slope of this relationship for both pairs of muscles (MG × soleus, P = 0.002; MG × LG, P = 0.006). Similarly, the slope of the linear relationship between the plantar flexion torque and the ARV of the MG or soleus changed significantly with knee extensor contraction (P = 0.031 and P = 0.041, respectively). These results suggest that muscle synergies characterized by non-mechanical constraints are selectively recruited according to whether contraction of the knee extensor muscles is performed simultaneously, which is relatively consistent with the muscle synergy hypothesis. PMID:29107958

  18. Metabolic responses to BRL37344 and clenbuterol in soleus muscle and C2C12 cells via different atypical pharmacologies and β2-adrenoceptor mechanisms

    PubMed Central

    Ngala, R A; O'Dowd, J; Wang, S J; Agarwal, A; Stocker, C; Cawthorne, M A; Arch, J R S

    2008-01-01

    Background and purpose: Picomolar concentrations of the β3-adrenoceptor agonist BRL37344 stimulate 2-deoxyglucose uptake in soleus muscle via undefined receptors. Higher concentrations alter uptake, apparently via β2-adrenoceptors. Effects of BRL37344 and β2-adrenoceptor agonists are compared. Experimental approach: Mouse soleus muscles were incubated with 2-deoxy[1-14C]-glucose, [1-14C]-palmitate or [2-14C]-pyruvate, and BRL37344, β2-adrenoceptor agonists and selective β-adrenoceptor antagonists. Formation of 2-deoxy[1-14C]-glucose-6-phosphate or 14CO2 was measured. 2-Deoxy[1-14C]-glucose uptake and β-adrenoceptor mRNA were measured in C2C12 cells. Key results: 10 pM BRL37344, 10 pM clenbuterol and 100 pM salbutamol stimulated 2-deoxyglucose uptake in soleus muscle by 33–54%. The effect of BRL37344 was prevented by 1 μM atenolol but not by 300 nM CGP20712A or IC3118551, or 1 μM SR59230A; that of clenbuterol was prevented by ICI118551 but not atenolol. 10 nM BRL37344 st4mulated 2-deoxyglucose uptake, whereas 100 nM clenbuterol and salbutamol inhibited uptake. These effects were blocked by ICI118551. Similar results were obtained in C2C12 cells, in which only β2-adrenoceptor mRNA could be detected by RT-PCR. 10 nM BRL37344 and 10 pM clenbuterol stimulated muscle palmitate oxidation. In the presence of palmitate, BRL37344 no longer stimulated 2-deoxyglucose uptake and the effect of clenbuterol was not significant. Conclusions and implications: Stimulation of glucose uptake by 10 pM BRL37344 and clenbuterol involves different atypical pharmacologies. Nanomolar concentrations of BRL37344 and clenbuterol, probably acting via β2-adrenoceptors, have opposite effects on glucose uptake. The agonists preferentially stimulate fat rather than carbohydrate oxidation, but stimulation of endogenous fat oxidation cannot explain why 100 nM clenbuterol inhibited 2-deoxyglucose uptake. PMID:18552870

  19. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    PubMed

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Transversal Stiffness and Young's Modulus of Single Fibers from Rat Soleus Muscle Probed by Atomic Force Microscopy

    PubMed Central

    Ogneva, Irina V.; Lebedev, Dmitry V.; Shenkman, Boris S.

    2010-01-01

    Abstract The structural integrity of striated muscle is determined by extra-sarcomere cytoskeleton that includes structures that connect the Z-disks and M-bands of a sarcomere to sarcomeres of neighbor myofibrils or to sarcolemma. Mechanical properties of these structures are not well characterized. The surface structure and transversal stiffness of single fibers from soleus muscle of the rat were studied with atomic force microscopy in liquid. We identified surface regions that correspond to projections of the Z-disks, M-bands, and structures between them. Transversal stiffness of the fibers was measured in each of these three regions. The stiffness was higher in the Z-disk regions, minimal between the Z-disks and the M-bands, and intermediate in the M-band regions. The stiffness increased twofold when relaxed fibers were maximally activated with calcium and threefold when they were transferred to rigor (ATP-free) solution. Transversal stiffness of fibers heavily treated with Triton X-100 was about twice higher than that of the permeabilized ones, however, its regional difference and the dependence on physiological state of the fiber remained the same. The data may be useful for understanding mechanics of muscle fibers when it is subjected to both axial and transversal strain and stress. PMID:20141755

  1. Role of glucocorticoids in the response of rat leg muscles to reduced activity

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Tischler, Marc E.

    1986-01-01

    Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced the atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus but cortisol administration increased the myhofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein degradation, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.

  2. Size and metabolic properties of single muscle fibers in rat soleus after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Hauschka, Edward O.; Roy, Roland R.; Edgerton, V. Reggie

    1987-01-01

    The effect of 28-day-long hind-limb suspension (HS) combined with 10 daily forceful lengthening contractions of the limb on the morphological and metabolic properties of individual fibers of the soleus was studied in rats, using quantitative histochemical techniques. Compared with nonsuspended controls (CON), soleus wet weights of HS rats were decreased by 49 percent; the fibers staining lightly for myosin ATPase ('light-ATPase' fibers) atrophied more than the 'dark-ATPase' fibers. Single-fiber alpha-glycerophosphate dehydrogenase (GPD) and succinate dehydrogenase (SDH) activities were higher in HS than in CON rats. Daily forceful lengthening contractions did not prevent the HS-induced changes. The results support the view that the soleus fibers can change from a slow-twitch oxidative to a fast-twitch oxidative-glycolytic profile, but rarely to a fast-twitch glycolytic one, and that the SDH and GPD activities per volume of tissue can be increased even when there are severe losses of contractile proteins.

  3. Postural hypotension and the anti-gravity suit.

    PubMed

    Brook, W H

    1994-10-01

    An air force anti-gravity suit, as used by fighter pilots to prevent loss of consciousness, has been successfully employed to treat severe postural hypotension in a patient with Shy-Drager syndrome. The definition of postural hypotension is reviewed, and reference is made to the previous use of the anti-gravity suit in the treatment of this condition.

  4. Hindlimb unloading-induced muscle atrophy and phenotype transition is attenuated in Smad3+/- mice

    NASA Astrophysics Data System (ADS)

    Chen, X. P.; Zhang, P.; Liu, S. H.; Wang, F.; Ge, X.; Wu, Y.; Fan, M.

    Currently it has been well defined that the microgravity-induced muscle disuse characterized by atrophy and slow-to-fast phenotype transition of the postural muscles such as soleus muscle but the basic mechanism underlying the atrophy and phenotype transition of soleus muscle is still unclear To investigate the developmental mechanisms of muscle atrophy and its phenotype transition under microgravity the soleus muscle of Smad3 and Smad3 - mice after 14 days hindlimb unloading was examined Using histology and immunohistochemistry assay we found that the soleus muscle volume and fiber number appeared a remarkable increases in Smad3 - mice compared to those in Smad3 control In addition Western blot analysis showed that the expression level of myosin heavy chain MHC -slow myofiber specific protein in soleus muscle was visibly higher in Smad3 - mice than in Smad3 mice In contrast the expression level of MHC-fast myofiber specific protein in soleus muscle was visibly lower in Smad3 - mice than in Smad3 mice Furthermore RT-PCR revealed that the expression of Smad3 and myogenic regulatory factor MRF mRNA was inversely regulated Finally we determined that either Smad3 mRNA or Smad3 protein were selectively distributed in quiescent satellite cells in vivo and in reserve cells in vitro Therefore our findings suggested that Smad3 might be a key transcriptional factor for soleus muscle atrophy and slow-to-fast phenotype transition of the slow muscle under microgravity In the future an agent that regulates Smad3 expression may be used to prevent

  5. Factors Modulating Recovery Rate after Intermittent Tetanic Fatigue in Atrophic Soleus

    NASA Astrophysics Data System (ADS)

    Li, Hui; Jiao, Bo; Yu, Zhibin

    2008-06-01

    To specify the factors modulating the recovery rate after intermittent tetanic fatigue in soleus, and to seek the reasons for the decrease of recovery rate in atrophic soleus, we observed the recovery time course of different types of fatigue in isolated muscle strips. A 10 % or 50 % decrease in maximal contraction tension of tetani was defined respectively as slight or moderate fatigue. Tetanic tension recovery rates after short-term and long-term of slight or moderate fatigue were observed, some pharmacological intervention were also used. The results showed that slight fatigue only induced an inhibition to myofibril, while moderate fatigue induced an inhibition in myofibril and sarcoplasmic reticulum Ca2+ release channels. There were significant decreases in all of the fatigue groups in one-week tail-suspended rats. These suggest that both slight and moderate fatigue inhibit the myofibrils and the sarcoplasmic reticulum Ca2+ release channels in one-week unloaded soleus.

  6. A new device for the inflation of the antigravity suit.

    PubMed

    Brodrick, P M

    1986-02-01

    The 'Schuco' orthopaedic tourniquet inflator can be simply converted into a suitable device for inflating an antigravity suit (G-suit). The antigravity suit may be used on neurosurgical patients undergoing procedures in the sitting position to help prevent hypotension and air embolism. The availability of this device may encourage the more widespread use of an antigravity suit in neuro-anaesthetic practice.

  7. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles

    PubMed Central

    Banks, R W

    2006-01-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g−1 of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg. PMID:16761976

  8. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  9. Muscular hypertrophy and atrophy in normal rats provoked by the administration of normal and denervated muscle extracts.

    PubMed

    Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José

    2016-12-01

    This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.

  10. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  11. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats.

    PubMed

    Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi

    2017-08-01

    The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box ( Atrogin-1 ), and muscle RING-finger protein-1 ( MuRF-1 ), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1 , but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1 α ), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1 α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological

  12. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  13. Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy.

    PubMed

    Parvin, Sh; Taghiloo, A; Irani, A; Mirbagheri, M Mehdi

    2017-07-01

    We aimed to study therapeutic effects of antigravity treadmill (AlterG) training on reflex hyper-excitability, muscle stiffness, and corticospinal tract (CST) function in children with spastic hemiplegic cerebral palsy (CP). Three children received AlterG training 3 days per week for 8 weeks as experimental group. Each session lasted 45 minutes. One child as control group received typical occupational therapy for the same amount of time. We evaluated hyper-excitability of lower limb muscles by H-reflex response. We quantified muscle stiffness by sonoelastography images of the affected muscles. We quantified CST activity by transcranial magnetic stimulation (TMS). We performed the evaluations before and after training for both groups. H response latency and maximum M-wave amplitude were improved in experimental group after training compared to control group. Two children of experimental group had TMS response. Major parameters of TMS (i.e. peak-to-peak amplitude of motor evoked potential (MEP), latency of MEP, cortical silent period, and intensity of pulse) improved for both of them. Three parameters of texture analysis of sonoelastography images were improved for experimental group (i.e. contrast, entropy, and shear wave velocity). These findings indicate that AlterG training can improve reflexes, muscle stiffness, and CST activity in children with spastic hemiplegic CP and can be considered as a therapeutic tool to improve neuromuscular abnormalities occurring secondary to CP.

  14. Conversion of rat muscle fiber types. A time course study.

    PubMed

    Oakley, C R; Gollnick, P D

    1985-01-01

    Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.

  15. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-07-26

    To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the

  16. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    PubMed Central

    2010-01-01

    Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies

  17. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, B.M.; Frye, G.S.; Ahn, B.

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia havemore » recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the

  18. Feasibility and safety of exercise stress testing using an anti-gravity treadmill with Tc-99m tetrofosmin single-photon emission computed tomography (SPECT) myocardial perfusion imaging: A pilot non-randomized controlled study.

    PubMed

    Daly, Patrick; Kayse, Regina; Rudick, Steven; Robbins, Nathan; Scheler, Jennifer; Harris, David; O'Donnell, Robert; Dwivedi, Alok K; Gerson, Myron C

    2017-08-31

    Exercise is the AHA/ACC guideline-recommended stress modality for myocardial perfusion imaging, but many patients are unable to exercise to target heart rate on a conventional treadmill. We examined the feasibility and safety of stress imaging using an anti-gravity treadmill in patients with perceived poor exercise capacity. 49 patients were recruited for stress testing by anti-gravity treadmill (n = 29) or to a regadenoson control group (n = 20). Seventeen anti-gravity test patients (59%) reached target heart rate obviating the need for a pharmacologic stress agent. Adverse effects of the anti-gravity treadmill were limited to minor muscle aches in 5 subjects. Stress myocardial perfusion image quality judged by 3 blinded readers on a 5-point scale was comparable for the anti-gravity treadmill (4.30 ± SD 0.87) vs pharmacologic stress (4.28 ± SD 0.66). Stress testing using an anti-gravity treadmill is feasible and may help some patients safely achieve target heart rate.

  19. Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading

    NASA Technical Reports Server (NTRS)

    Howard, G.; Steffen, J. M.; Geoghegan, T. E.

    1989-01-01

    The regulatory role of transcriptional alterations in unloaded skeletal muscles was investigated by determining levels of total muscle RNA and mRNA fractions in soleus, gastrocnemius, and extensor digitorum longus (EDL) of rats subjected to whole-body suspension for up to 7 days. After 7 days, total RNA and mRNA contents were lower in soleus and gastrocnemius, compared with controls, but the concentrations of both RNAs per g muscle were unaltered. Alpha-actin mRNA (assessed by dot hybridization) was significantly reduced in soleus after 1, 3, and 7 days of suspension and in gastrocnemius after 3 and 7 days, but was unchanged in EDL. Protein synthesis directed by RNA extracted from soleus and EDL indicated marked alteration in mRNAs coding for several small proteins. Results suggest that altered transcription and availability of specific mRNAs contribute significantly to the regulation of protein synthesis during skeletal muscle unloading.

  20. Is Soleus Muscle-Tendon-Unit Behavior Related to Ground-Force Application During the Sprint Start?

    PubMed

    Schrödter, Erik; Brüggemann, Gert-Peter; Willwacher, Steffen

    2017-04-01

    To describe the stretch-shortening behavior of ankle plantar-flexing muscle-tendon units (MTUs) during the push-off in a sprint start. Fifty-four male (100-m personal best: 9.58-12.07 s) and 34 female (100-m personal best: 11.05-14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels. The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2-18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4-9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes' block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation. This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.

  1. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    PubMed

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  2. Relationship between antigravity control and postural control in young children.

    PubMed

    Sellers, J S

    1988-04-01

    The purposes of this study were 1) to determine the relationship between antigravity control (supine flexion and prone extension) and postural control (static and dynamic balance), 2) to determine the quality of antigravity and postural control, and 3) to determine whether sex and ethnic group differences correlate with differences in antigravity control and postural control in young children. I tested 107 black, Hispanic, and Caucasian children in a Head Start program, with a mean age of 61 months. The study results showed significant relationships between antigravity control and postural control. Subjects' supine flexion performance was significantly related to the quantity and quality of their static and dynamic balance performance, whereas prone extension performance was related only to the quality of dynamic balance performance. Quality scale measurements (r = .90) indicated that the children in this study had not yet developed full antigravity or postural control. The study results revealed differences between sexes in the quality of static balance and prone extension performance and ethnic differences in static balance, dynamic balance, and prone extension performance.

  3. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  4. Heat production during contraction in skeletal muscle of hypothyroid mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be relatedmore » to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.« less

  5. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  6. Na+,K+-pump stimulation improves contractility in isolated muscles of mice with hyperkalemic periodic paralysis

    PubMed Central

    Nielsen, Ole Bækgaard; Clausen, Johannes D.; Pedersen, Thomas Holm; Hayward, Lawrence J.

    2011-01-01

    In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K+ ingestion or rest after exercise. Force can be restored by muscle work or treatment with β2-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na+ channel (Nav1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K+]o. In resting mutant soleus, tetrodotoxin (TTX)-suppressible 22Na uptake and [Na+]i were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na+,K+ pump–mediated 86Rb uptake was 83% larger than in WT. Salbutamol stimulated 86Rb uptake and reduced [Na+]i both in mutant and WT soleus. Stimulating Na+,K+ pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na+]i with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na+,K+ pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na+]i on the synthesis of Na+,K+ pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na+ influx and show that contractility can be restored by acute stimulation of the Na+,K+ pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in 86Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These

  7. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    PubMed Central

    Widrick, J J; Knuth, S T; Norenberg, K M; Romatowski, J G; Bain, J L W; Riley, D A; Karhanek, M; Trappe, S W; Trappe, T A; Costill, D L; Fitts, R H

    1999-01-01

    Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 ± 0.02 vs. 0.99 ± 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 ± 0.02 vs. 0.64 ± 0.02 fibre lengths s−1) than pre-flight type I fibres. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (μN (fibre length) s−1). The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force

  8. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Knuth, S. T.; Norenberg, K. M.; Romatowski, J. G.; Bain, J. L.; Riley, D. A.; Karhanek, M.; Trappe, S. W.; Trappe, T. A.; Costill, D. L.; hide

    1999-01-01

    1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact

  9. Contractile properties of rat skeletal muscles following storage at 4 degrees C.

    PubMed

    van der Heijden, E P; Kroese, A B; Stremel, R W; Bär, P R; Kon, M; Werker, P M

    1999-07-01

    The purpose of this study was to assess the potential of preservation solutions for protecting skeletal muscle function during storage at 4 degrees C. The soleus and the cutaneus trunci (CT) from the rat were stored for 2, 8 or 16 h at 4 degrees C in University of Wisconsin solution (UW), HTK-Bretschneider solution (HTK) or Krebs-Henseleit solution (KH). After storage, muscles were stimulated electrically to analyse the isometric contractile properties, such as the maximum tetanic tension (P(0)). Histological analysis was also performed. In separate experiments, the effect of the diffusion distance on muscle preservation was studied by bisecting the soleus. After 8 h of storage in UW or HTK, the contractile properties of the CT were similar to those of the control, whereas those of the soleus were reduced (P(0) values of 16% and 69% of control in UW and HTK respectively). At 16 h, the contractile properties of the CT (P(O) 28%) were again better preserved than those of the soleus (P(0) 9%). Muscle function deteriorated most after storage in KH (P(0) at 16 h: soleus, 3%; CT, 17%). The bisected soleus was equally well preserved as the CT (P(O) of bisected soleus at 8 h in UW and HTK: 86%). The functional data corresponded well with the histological data, which showed increasing muscle fibre derangement with increasing storage time. For both muscles and all solutions, the threshold stimulus current increased with increasing storage time (control, 0.1 mA; 16 h, 1.2 mA) and was strongly correlated with the deterioration in contractile properties. It is concluded that, at 4 degrees C, muscle is preserved better in UW and HTK (intracellular-like solutions) than in KH (extracellular-like solution). The soleus and CT were best protected in HTK. The diffusion distance is a critical factor for successful preservation of muscle function at 4 degrees C. The reduced function after 16 h of storage at 4 degrees C was caused by hypercontraction and necrosis of about 25% of the

  10. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  11. Roller massage decreases spinal excitability to the soleus.

    PubMed

    Young, James D; Spence, Alyssa-Joy; Behm, David G

    2018-04-01

    Roller massage (RM) interventions have shown acute increases in range of motion (ROM) and pain pressure threshold (PPT). It is unclear whether the RM-induced increases can be attributed to changes in neural or muscle responses. The purpose of this study was to evaluate the effect of altered afferent input via application of RM on spinal excitability, as measured with the Hoffmann (H-) reflex. A randomized within-subjects design was used. Three 30-s bouts of RM were implemented on a rested, nonexercised, injury-free muscle with 30 s of rest between bouts. The researcher applied RM to the plantar flexors at three intensities of pain: high, moderate, and sham. Measures included normalized M-wave and H-reflex peak-to-peak amplitudes before, during, and up to 3 min postintervention. M-wave and H-reflex measures were highly reliable. RM resulted in significant decreases in soleus H-reflex amplitudes. High-intensity, moderate-intensity, and sham conditions decreased soleus H-reflex amplitudes by 58%, 43%, and 19%, respectively. H-reflexes induced with high-intensity rolling discomfort or pain were significantly lower than moderate and sham conditions. The effects were transient in nature, with an immediate return to baseline following RM. This is the first evidence of RM-induced modulation of spinal excitability. The intensity-dependent response observed indicates that rolling pressure or pain perception may play a role in modulation of the inhibition. Roller massage-induced neural modulation of spinal excitability may explain previously reported increases in ROM and PPT. NEW & NOTEWORTHY Recent evidence indicates that the benefits of foam rolling and roller massage are primarily accrued through neural mechanisms. The present study attempts to determine the neuromuscular response to roller massage interventions. We provide strong evidence of roller massage-induced neural modulation of spinal excitability to the soleus. It is plausible that reflex inhibition may explain

  12. Exercise effects on the size and metabolic properties of soleus fibers in hindlimb-suspended rats

    NASA Technical Reports Server (NTRS)

    Graham, Scot C.; Roy, Roland R.; West, Steve P.; Thomason, Don; Baldwin, Kenneth M.

    1989-01-01

    The effects of four-week-long hind-limb suspension (HS) of rats on the size the soleus muscle fibers and the activity of succinate dehydrogenase (SDH) in dark and light ATPase fibers were investigated together with the efficacy of an endurance exercise (EX) program (daily treadmill exercise for 1.5 h/day at 20 m/min and a 30-percent grade) in ameliorating HS-induced changes. It was found that, in comparison to age-matched controls, the soleus wet weight decreased by 69 and 30 percent in HS and HS-EX rats, respectively, and the percent of dark ATPase fibers increased from 10 percent in controls to 19 and 17 percent, respectively. The values of the integrated fiber activity (activity/min times muscle area) showed a net loss of SDH in both the light and dark ATPase fibers of HS rats, but only in the light ATPase fibers of the HS-EX rats, indicating that exercise ameliorated but did not prevent the muscle fiber atrophy induced by HS.

  13. Coordinate downregulation of CaM kinase II and phospholamban accompanies contractile phenotype transition in the hyperthyroid rabbit soleus.

    PubMed

    Jiang, M; Xu, A; Jones, D L; Narayanan, N

    2004-09-01

    This study investigated the effects of l-thyroxine-induced hyperthyroidism on Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaM kinase II)-mediated sarcoplasmic reticulum (SR) protein phosphorylation, SR Ca(2+) pump (Ca(2+)-ATPase) activity, and contraction duration in slow-twitch soleus muscle of the rabbit. Phosphorylation of Ca(2+)-ATPase and phospholamban (PLN) by endogenous CaM kinase II was found to be significantly lower (30-50%) in soleus of the hyperthyroid compared with euthyroid rabbit. Western blotting analysis revealed higher levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) 1 ( approximately 150%) Ca(2+) pump isoform, unaltered levels of SERCA2 Ca(2+) pump isoform, and lower levels of PLN ( approximately 50%) and delta-, beta-, and gamma-CaM kinase II (40 approximately 70%) in soleus of the hyperthyroid rabbit. SR vesicles from hyperthyroid rabbit soleus displayed approximately twofold higher ATP-energized Ca(2+) uptake and Ca(2+)-stimulated ATPase activities compared with that from euthyroid control. The V(max) of Ca(2+) uptake (in nmol Ca(2+).mg SR protein(-1).min(-1): euthyroid, 818 +/- 73; hyperthyroid, 1,649 +/- 90) but not the apparent affinity of the Ca(2+)-ATPase for Ca(2+) (euthyroid, 0.97 +/- 0.02 microM, hyperthyroid, 1.09 +/- 0.04 microM) differed significantly between the two groups. CaM kinase II-mediated stimulation of Ca(2+) uptake by soleus muscle SR was approximately 60% lower in the hyperthyroid compared with euthyroid. Isometric twitch force of soleus measured in situ was significantly greater ( approximately 36%), and the time to peak force and relaxation time were significantly lower ( approximately 30-40%), in the hyperthyroid. These results demonstrate that thyroid hormone-induced transition in contractile properties of the rabbit soleus is associated with coordinate downregulation of the expression and function of PLN and CaM kinase II and selective upregulation of the expression and function of SERCA1, but not

  14. Glucose uptake in rat soleus - Effect of acute unloading and subsequent reloading

    NASA Technical Reports Server (NTRS)

    Henriksen, Eric J.; Tischler, Marc E.

    1988-01-01

    The effect of acutely reduced weight bearing (unloading) on the in vitro uptake of 2-1,2-H-3-deoxy-D-glucose was studied in the soleus muscle by tail casting and suspending rats. After just 4 h, the uptake of 2-deoxy-D-glucose fell (-19 percent) and declined further after an additional 20 h of unloading. This diminution at 24 h was associated with slower oxidation of C-14-glucose and incorporation of C-14-glucose into glycogen. At 3 days of unloading, basal uptake of 2-deoxy-D-glucose did not differ from control. Reloading of the soleus after 1 or 3 days of unloading increased uptake of 2-deoxy-D-glucose above control and returned it to normal within 6 h and 4 days, respectively. These effects of unloading and recovery were caused by local changes in the soleus, because the extensor digitorum longus from the same hindlimbs did not display any alterations in uptake of 2-deoxy-D-glucose or metabolism of glucose.

  15. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  16. Effects of 4 weeks of low-load unilateral resistance training, with and without blood flow restriction, on strength, thickness, V wave, and H reflex of the soleus muscle in men.

    PubMed

    Colomer-Poveda, David; Romero-Arenas, Salvador; Vera-Ibáñez, Antonio; Viñuela-García, Manuel; Márquez, Gonzalo

    2017-07-01

    To test the effects of 4 weeks of unilateral low-load resistance training (LLRT), with and without blood flow restriction (BFR), on maximal voluntary contraction (MVC), muscle thickness, volitional wave (V wave), and Hoffmann reflex (H reflex) of the soleus muscle. Twenty-two males were randomly distributed into three groups: a control group (CTR; n = 8); a low-load blood flow restriction resistance training group (BFR-LLRT; n = 7), who were an inflatable cuff to occlude blood flow; and a low-load resistance training group without blood flow restriction (LLRT; n = 7). The training consisted of four sets of unilateral isometric LLRT (25% of MVC) three times a week over 4 weeks. MVC increased 33% (P < 0.001) and 22% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. The soleus thickness increased 9.5% (P < 0.001) and 6.5% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. However, neither MVC nor thickness changed in either of the legs tested in the CTR group (MVC -1 and -5%, and muscle thickness 1.9 and 1.2%, for the control and trained leg, respectively). Moreover, V wave and H reflex did not change significantly in all the groups studied (V wave /M wave ratio -7.9 and -2.6%, and H max /M max ratio -3.8 and -4%, for the control and trained leg, respectively). Collectively, the present data suggest that in spite of the changes occurring in soleus strength and thickness, 4 weeks of low-load resistance training, with or without BFR, does not cause any change in neural drive or motoneuronal excitability.

  17. Effects of Spaceflight on the Attachment of Muscle to the Tibia, Fibula and Calcaneus

    NASA Technical Reports Server (NTRS)

    Johnson, R. B.; Tsao, A. K.; St.John, K. R.; Betcher, R. A.; Tucci, M. A.; Parsell, D. E.; Dai, X.; Zardiackas, L. D.; Benghuzzi, H. A.

    1999-01-01

    Microgravity significantly reduces transmission of ground-reaction forces to bones, promoting atrophy. There is little information available concerning the effects of microgravity on bones at sites where anti-gravity muscles are attached (tendon-bone junctions). This study evaluates the effects of microgravity on the origin and insertion sites of anti-gravity muscles on the rat tibia, fibula and calcaneus. Changes in the strength of those tendon-bone junctions could predispose the animal to injury following spaceflight.

  18. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Fukunaga, T.; Roy, R. R.; Shellock, F. G.; Hodgson, J. A.; Day, M. K.; Lee, P. L.; Kwong-Fu, H.; Edgerton, V. R.

    1992-01-01

    Magnetic resonance imaging techniques were used to determine the physiological cross-sectional areas (PCSAs) of the major muscles or muscle groups of the lower leg. For 12 healthy subjects, the boundaries of each muscle or muscle group were digitized from images taken at 1-cm intervals along the length of the leg. Muscle volumes were calculated from the summation of each anatomical CSA (ACSA) and the distance between each section. Muscle length was determined as the distance between the most proximal and distal images in which the muscle was visible. The PCSA of each muscle was calculated as muscle volume times the cosine of the angle of fiber pinnation divided by fiber length, where published fiber length:muscle length ratios were used to estimate fiber lengths. The mean volumes of the major plantarflexors were 489, 245, and 140 cm3 for the soleus and medial (MG) and lateral (LG) heads of the gastrocnemius. The mean PCSA of the soleus was 230 cm2, about three and eight times larger than the MG (68 cm2) and LG (28 cm2), respectively. These PCSA values were eight (soleus), four (MG), and three (LG) times larger than their respective maximum ACSA. The major dorsiflexor, the tibialis anterior (TA), had a muscle volume of 143 cm2, a PCSA of 19 cm2, and an ACSA of 9 cm2. With the exception of the soleus, the mean fiber length of all subjects was closely related to muscle volume across muscles. The soleus fibers were unusually short relative to the muscle volume, thus potentiating its force potential.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Thyroid hormone stimulates myoglobin expression in soleus and extensorum digitalis longus muscles of rats: concomitant alterations in the activities of Krebs cycle oxidative enzymes.

    PubMed

    dos Santos, R A; Giannocco, G; Nunes, M T

    2001-06-01

    Myoglobin (Mb) gene expression, Citrate Synthase (CS) and Succinate Dehydrogenase (SDH) activities of Soleus (S) and Extensorum Digitalis Longus (EDL) muscles were studied in intact, thyroidectomized and T3-treated (25 microg/100g, BW, ip, 15 days) rats. The fiber type composition of S muscle was also evaluated and used as control of the T3-induced effects. In the S muscle, the T3 treatment increased the Mb mRNA and protein expression, as well as the CS and SDH activity. These changes occurred parallel to the expected increase in type II (fast) and decrease in type I (slow)-fibers in S muscle. In the hypothyroid state, the Mb mRNA was decreased, while the Mb expression and CS activity tended to decrease. In contrast the SDH activity was increased, probably due to the enhanced motor activity that occurs as a short-term response to the hypothermia induced by hypothyroidism. In the EDL, the alterations were milder than those in S muscle in both thyroid states. These findings show that Mb gene expression is induced by T3. This is concomitant with the enhancement of Krebs Cycle enzyme activities and provides additional evidence that thyroid hormone increases the aerobic potential of skeletal muscles, as well as the speed of muscle contraction.

  20. Pre- and post-alpha motoneuronal control of the soleus H-reflex during sinusoidal hip movements in human spinal cord injury

    PubMed Central

    Knikou, Maria; Chaudhuri, Debjani; Kay, Elizabeth; Schmit, Brian D.

    2006-01-01

    The aim of this study was to establish the contribution of hip-mediated sensory feedback to spinal interneuronal circuits during dynamic conditions in people with incomplete spinal cord injury (SCI). Specifically, we investigated the effects of synergistic and antagonistic group I afferents on the soleus H-reflex during imposed sinusoidal hip movements. The soleus H-reflex was conditioned by stimulating the common peroneal nerve (CPN) at short (2, 3, and 4 ms) and long (80, 100, and 120 ms) conditioning test (C-T) intervals to assess the reciprocal and pre-synaptic inhibition of the soleus H-reflex, respectively. The soleus H-reflex was also conditioned by medial gastrocnemius (MG) nerve stimulation at C-T intervals ranging from 4 to 7 ms to assess changes in autogenic Ib inhibition during hip movement. Sinusoidal hip movements were imposed to the right hip joint at 0.2 Hz by the Biodex system while subjects were supine. The effects of sinusoidal hip movement on five leg muscles along with hip, knee, and ankle joint torques were also established during sensorimotor conditioning of the reflex. Phase-dependent modulation of antagonistic and synergistic muscle afferents was present during hip movement, with the reciprocal, pre-synaptic, and Ib inhibition to be significantly reduced during hip extension and reinforced during hip flexion. Reflexive muscle and joint torque responses – induced by the hip movement – were entrained to specific phases of hip movement. This study provides evidence that hip-mediated input acts as a controlling signal of pre- and post-alpha motoneuronal control of the soleus H-reflex. The expression of these spinal interneuronal circuits during imposed sinusoidal hip movements is discussed with respect to motor recovery in humans after SCI. PMID:16782072

  1. Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers.

    PubMed

    Oishi, Yasuharu; Hayashida, Mari; Tsukiashi, Shinsuke; Taniguchi, Kohachi; Kami, Katsuya; Roy, Roland R; Ohira, Yoshinobu

    2009-11-01

    To investigate the effects of heat stress (hyperthermia) on muscle degeneration-regeneration, the soleus muscles of adult male Wistar rats were injected bilaterally with a single injection of bupivacaine. The rats were assigned to a sedentary control (Con), heat stress (Heat), bupivacaine-injected (BPVC), or bupivacaine-injected plus heat stress (BPVC+Heat) group. Heat stress was induced in the Heat and BPVC+Heat groups by immersion of the lower half of the body into water maintained at 42 +/- 1 degrees C for 30 min 48 h after the injection of bupivacaine and every other day during the following 1 or 2 wk. The soleus muscles in all groups were excised 24 h after the final bout of heat stress. Mean muscle weight, fiber cross-sectional area, myonuclear number, and heat shock protein 72 (Hsp72) and calcineurin protein levels were lower in the BPVC than in the Con or Heat groups at both time points. In contrast, several of these parameters in the BPVC+Heat group were not different or higher than in the Con or Heat groups at the 1- and/or 2-wk time points. The number of total and activated satellite cells, estimated by analyses of Pax7-negative, M-cadherin-negative, and MyoD-positive nuclei, was greater in BPVC+Heat than in all other groups. Combined, the results indicate that heat stress-related activation of satellite cells and upregulation of Hsp72 and calcineurin expression played important roles in the regeneration of the soleus fibers after bupivacaine injection.

  2. Cardiovascular regulation during head-up tilt in healthy 20-30-year-old and 70-75-year-old men.

    PubMed

    Gabbett, T J; Weston, S B; Barrett, R S; Gass, G C

    2001-02-01

    This study compared the heart rate, finger arterial pressure (AP) and electromyographic (EMG) activity of selected anti-gravity muscles during the initial and prolonged phases of orthostatic stress in healthy young and older men. Beat-by-beat recordings of heart rate, finger systolic pressure, diastolic pressure and mean AP were made during supine rest and 5 min of 90 degrees head-up tilt (HUT) in 18 young (23+/-1 years) and 15 older (73+/-1 years) men. The EMG activity of the soleus, tibialis anterior and vastus medialis muscles was recorded. During the first 30 s following 90 degrees HUT (immediate response), the young men exhibited significant (P<0.05) decreases in finger systolic pressure, diastolic pressure and mean AP, followed by a sustained increase in finger AP during the 5 min following 90 degrees HUT (prolonged response). The immediate and prolonged finger AP and diastolic pressure responses were not significantly different (P>0.05) from the values at supine rest for the older men. The mean root mean square EMG activity of the soleus, tibialis anterior and vastus medialis muscles during 90 degrees HUT was not significantly different (P>0.05) from that at supine rest for either group. These results demonstrate that, when compared with healthy older men, young men show larger reductions in finger AP during the initial phase of orthostatic stress. However, during the prolonged phase of orthostatic stress, older men maintain resting finger AP, whereas young men demonstrate a reflex overshoot in finger AP. Finally, differences in lower-limb anti-gravity muscle activation do not account for the contrasting finger AP responses of healthy young and older men.

  3. Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans

    PubMed Central

    Grey, Michael J; Ladouceur, Michel; Andersen, Jacob B; Nielsen, Jens Bo; Sinkjær, Thomas

    2001-01-01

    The objective of this study was to determine which afferents contribute to the medium latency response of the soleus stretch reflex resulting from an unexpected perturbation during human walking. Fourteen healthy subjects walked on a treadmill at approximately 3.5 km h−1 with the left ankle attached to a portable stretching device. The soleus stretch reflex was elicited by applying small amplitude (∼8 deg) dorsiflexion perturbations 200 ms after heel contact. Short and medium latency responses were observed with latencies of 55 ± 5 and 78 ± 6 ms, respectively. The short latency response was velocity sensitive (P < 0.001), while the medium latency response was not (P = 0.725). Nerve cooling increased the delay of the medium latency component to a greater extent than that of the short latency component (P < 0.005). Ischaemia strongly decreased the short latency component (P = 0.004), whereas the medium latency component was unchanged (P = 0.437). Two hours after the ingestion of tizanidine, an α2-adrenergic receptor agonist known to selectively depress the transmission in the group II afferent pathway, the medium latency reflex was strongly depressed (P = 0.007), whereas the short latency component was unchanged (P = 0.653). An ankle block with lidocaine hydrochloride was performed to suppress the cutaneous afferents of the foot and ankle. Neither the short (P = 0.453) nor medium (P = 0.310) latency reflexes were changed. Our results support the hypothesis that, during walking the medium latency component of the stretch reflex resulting from an unexpected perturbation is contributed to by group II muscle afferents. PMID:11483721

  4. Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity

    PubMed Central

    Liantonio, Antonella; De Bellis, Michela; Cannone, Maria; Sblendorio, Valeriana; Conte, Elena; Mele, Antonietta; Tricarico, Domenico; Tavella, Sara; Ruggiu, Alessandra; Cancedda, Ranieri; Ohira, Yoshinobu; Danieli-Betto, Daniela; Ciciliot, Stefano; Germinario, Elena; Sandonà, Dorianna; Betto, Romeo; Desaphy, Jean-François

    2013-01-01

    Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca2+ concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle

  5. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  6. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function

    PubMed Central

    Diamond, Ivan; Franklin, Gary M.; Milfay, Dale

    1974-01-01

    1. The role of muscle mass and function in the regulation of choline acetyltransferase activity at the neuromuscular junction has been investigated in the rat. 2. Choline acetyltransferase (ChAc) is located in presynaptic nerve terminals and is a specific enzymatic marker of cholinergic innervation in muscle. 3. ChAc activity increased co-ordinately with developmental growth of the soleus muscle. However, another form of muscle growth, work hypertrophy, did not produce an increase in ChAc. 4. Growth arrest of muscle by hypophysectomy did not alter the normal development of ChAc activity, and cortisone-induced muscle atrophy did not reduce ChAc activity in the soleus or plantaris. 5. Tenotomy-induced muscle atrophy provoked a significant fall in ChAc in the soleus and plantaris. 6. The tonic soleus had significantly greater ChAc activity than the phasic plantaris. 7. These observations suggest that muscle mass per se does not influence the development and regulation of ChAc in muscle but that the quality of muscle contraction may modulate enzyme activity. PMID:4818500

  7. Electromyography of wrist and finger flexor muscles in olive baboons (Papio anubis).

    PubMed

    Patel, Biren A; Larson, Susan G; Stern, Jack T

    2012-01-01

    Some non-human primates use digitigrade hand postures when walking slowly on the ground. As a component of an extended limb, a digitigrade posture can help minimize wrist joint moments thereby requiring little force production directly from wrist flexors (and/or from the assistance of finger flexors) to maintain limb posture. As a consequence, less active muscle volume would be required from these anti-gravity muscles and overall metabolic costs associated with locomotion could be reduced. To investigate whether the use of digitigrade hand postures during walking in primates entails minimal use of anti-gravity muscles, this study examined electromyography (EMG) patterns in both the wrist and finger flexor muscles in facultatively digitigrade olive baboons (Papio anubis) across a range of speeds. The results demonstrate that baboons can adopt a digitigrade hand posture when standing and moving at slow speeds without requiring substantial EMG activity from distal anti-gravity muscles. Higher speed locomotion, however, entails increasing EMG activity and is accompanied by a dynamic shift to a more palmigrade-like limb posture. Thus, the ability to adopt a digitigrade hand posture by monkeys is an adaptation for ground living, but it was never co-opted for fast locomotion. Rather, digitigrady in primates appears to be related to energetic efficiency for walking long distances.

  8. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    PubMed Central

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-01-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage. PMID:27417976

  9. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking

    NASA Astrophysics Data System (ADS)

    Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.

    2016-07-01

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.

  10. Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking.

    PubMed

    Takahashi, Kota Z; Gross, Michael T; van Werkhoven, Herman; Piazza, Stephen J; Sawicki, Gregory S

    2016-07-15

    Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors' mechanical advantage.

  11. Effects of pituitary dwarfism in the mouse on fast and slow skeletal muscles.

    PubMed

    Stickland, N C; Crook, A R; Sutton, C M

    1994-01-01

    The Snell dwarf mouse exhibits impaired growth of the anterior pituitary resulting in reduced levels of growth hormone and thyroid stimulating hormone. Ten dwarf mice and 10 phenotypically normal littermates were killed at 33 days of age. M. biceps brachii (a predominantly fast muscle) and m. soleus (a relatively slow muscle) were removed from each animal and complete frozen transverse sections obtained. Serial sections were reacted for various enzyme activities in order to identify muscle fibre types. There was no difference in the total number of muscle fibres in m. biceps brachii but a small difference in m. soleus between normal and dwarf mice. There were marked differences in the size of all fibre types between normal and dwarf mice with the largest differences in m. soleus. The percentage of slow oxidative fibres was similar (about 32%) in both groups of mice for m. soleus but there was a marked difference for this fibre type in m. biceps brachii being about 1.5% in normal mice and 8.0% in dwarf mice. This may be related to a difference in levels of thyroid hormone. Nuclear density was very significantly greater in dwarf muscles although total nuclear numbers were less than in normal muscles. These differences are most likely due to growth hormone levels. Differences in nuclear content were much greater in m. soleus than in m. biceps brachii.

  12. Beef extract supplementation increases leg muscle mass and modifies skeletal muscle fiber types in rats.

    PubMed

    Yoshihara, Hiroyuki; Wakamatsu, Jun-Ichiro; Kawabata, Fuminori; Mori, Sunao; Haruno, Atsushi; Hayashi, Toshiya; Sekiguchi, Takeshi; Mizunoya, Wataru; Tatsumi, Ryuichi; Ito, Tatsumi; Ikeuchi, Yoshihide

    2006-06-01

    The objective of this research was to investigate the effects of beef extract on fat metabolism, muscle mass and muscle fiber types in rats. We also investigated the synergetic effect of endurance exercise. Twenty-four male rats weighing about 270 g were assigned to two diets containing 0 or 6% beef extract (BE). Half the rats fed each diet were subjected to compulsory exercise (CE) for 30 min every other day. After 4 weeks feeding, the blood was collected and various organs were dissected. The muscle fiber type of the soleus and extensor digitorum longus (EDL) muscles were evaluated by histochemical and electrophoretical analyses. Rats supplemented with BE showed a decrease in fat content in liver and abdomen and an increase in the activity of carnitine palmitoyl transferase II in liver. BE as well as exercise increased the relative weights of both soleus and EDL. BE alone and BE plus CE did not affect the distribution of muscle fiber types in soleus. BE without exercise decreased in type IIb of EDL from 54% to 44% with compensatory increase in type IIa from 41% to 49% and type I from 5% to 7% compared with the nonsupplemented, nonexercised control group. No synergetic effect on a fast to slow fiber conversion due to the combination of BE and CE was detected. Thus, BE supplement increased muscle mass and slow type fiber in EDL. The effects of BE supplement on muscle characteristics were similar to those of exercise. beef extract, fat metabolism, muscle fiber type, muscle mass, L-carnitine

  13. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27% decrease in mass and a 60% increase in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  14. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Henriksen, E. J.; Tischler, M. E.; Jacob, S.; Cook, P. H.

    1985-01-01

    Previous studies in this laboratory using the tail-bast hindlimb suspension model have shown that there are specific changes in protein and carbohydrate metabolism in the soleus muscle due to unloading. For example, 6 days of unloading caused a 27 percent decrease in mass and a 60 percent increse in glycogen content in the soleus muscle, while the extensor digitorum longus muscle was unaffected. Also, fresh tissue tyrosine and its in vitro release from the muscle are increased in the unloaded soleus, indicating that this condition causes a more negative protein balance. With these results in mind, studies to investigate the effect of hypogravity on protein and carbohydrate metabolism in a number of rat hindlimb muscles were carried out.

  15. Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Colleran, P. N.; Wilkerson, M. K.; McCurdy, M. R.; Muller-Delp, J.

    2000-01-01

    Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).

  16. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  17. Persistent hydrocephalus due to postural activation of a ventricular shunt anti-gravity device.

    PubMed

    Craven, Claudia L; Toma, Ahmed K; Watkins, Laurence D

    2017-03-01

    The ever present need to balance over drainage with under drainage in hydrocephalus has required innovations including adjustable valves with antigravity devices. These are activated in the vertical position to prevent siphoning. We describe a group of bedridden patients who presented with unexplained under drainage caused by activation of antigravity shunt components produced by peculiar head/body position. Retrospective single centre case series of hydrocephalus patients, treated with ventriculo-peritoneal (VP) shunt insertion between April 2014 - February 2016. These patients presented with clinical and radiological under drainage syndrome. Medical notes were reviewed for clinical picture and outcome. Radiological studies were reviewed assessing shunt placement and ventricular size. Seven patients presented with clinical and radiological under drainage syndrome. A consistent posturing of long term hyper-flexion of the neck whilst lying supine was observed. All patients had similar shunt construct (adjustable Miethke ProGAV valve and shunt assistant anti-gravity component). In each of those patients a hypothesis was formulated that neck flexion was activating the shunt assistance anti-gravity component in supine position. Five patients underwent shunt revision surgery removing the shunt assistant device from the cranium and adding an anti-gravity component to the shunt system at the chest. One had the shunt assistant completely removed and one patient was managed conservatively with mobilisation. All patients had clinical and radiological improvement. Antigravity shunt components implanted cranially in bedridden hydrocephalus patients will produce underdrainage due to head flexion induced anti-gravity device activation. In these patients, anti-gravity devices should be placed at the chest. Alternatively, special nursing attention should be paid to head-trunk angle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Strong anti-gravity Life in the shock wave

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, Marco; Roland, Kaj

    1992-12-01

    Strong anti-gravity is the vanishing of the net force between two massive particles at rest, to all orders in Newton's constant. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of a shock-wave solution in the higher-dimensional model.

  19. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Xu, Hongjie; Wu, Feng; Cao, Hongqing; Kan, Guanghan; Zhang, Hongyu; Yeung, Ella W.; Shang, Peng; Dai, Zhongquan; Li, Yinghui

    2015-02-01

    Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus in response to microgravity. MiRNAs and mRNA microarray of soleus after tail suspension (TS) for 7 and 14 days were performed followed by target gene and function annotation analysis and qRT-PCR. Relative muscle mass lost by 37.0% in TS-7 but less than 10% in the following three weeks. TS altered 23 miRNAs and 1313 mRNAs with at least 2-fold. QRT-PCR confirmed some of these changes. MiR-214, miR-486-5p and miR-221 continuously decreased. MiR-674 and Let-7e decreased only in TS-7, while miR-320b and miR-187 decreased only in TS-14. But there was no alteration of miR-320 and miR-206 in both time point. For mRNA detection, actn3 (5.1-fold and 13.8-fold) and myh4 (38-fold and 51.6-fold) increased abundantly and a3galt2 decreased. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. GO terms and cellular pathway of these alteration showed enrichment in regulation of muscle metabolism. Integration analysis of the miRNA and mRNA expression profiles confirmed that eleven genes were differently regulated by four miRNAs. This is the first study that showed expression pattern and synergistical regulation of miRNA and mRNA in rat soleus of TS for up to 14 days.

  20. A Postulated Mechanism that Leads to Materialization and Dematerialization of Matter and to Antigravity

    DTIC Science & Technology

    1975-10-08

    m AD-A020 796 A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY Thomas E. Bearden Army...TITLE fand Subtlll») A POSTULATED MECHANISM THAT LEADS TO MATERIALIZATION AND DEMATERIALIZATION OF MATTER AND TO ANTIGRAVITY S. TYPE OF REPORT... Antigravity 1 Three-dimensional space Photon Orthogonal frames i I

  1. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  2. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age.

    PubMed

    Gorski, Jeff P; Huffman, Nichole T; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G; Bonewald, Lynda; Brotto, Marco

    2016-02-26

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10-12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Deletion of Mbtps1 (Pcsk8, S1p, Ski-1) Gene in Osteocytes Stimulates Soleus Muscle Regeneration and Increased Size and Contractile Force with Age*

    PubMed Central

    Gorski, Jeff P.; Huffman, Nichole T.; Vallejo, Julian; Brotto, Leticia; Chittur, Sridar V.; Breggia, Anne; Stern, Amber; Huang, Jian; Mo, Chenglin; Seidah, Nabil G.; Bonewald, Lynda; Brotto, Marco

    2016-01-01

    Conditional deletion of Mbtps1 (cKO) protease in bone osteocytes leads to an age-related increase in mass (12%) and in contractile force (30%) in adult slow twitch soleus muscles (SOL) with no effect on fast twitch extensor digitorum longus muscles. Surprisingly, bone from 10–12-month-old cKO animals was indistinguishable from controls in size, density, and morphology except for a 25% increase in stiffness. cKO SOL exhibited increased expression of Pax7, Myog, Myod1, Notch, and Myh3 and 6-fold more centralized nuclei, characteristics of postnatal regenerating muscle, but only in type I myosin heavy chain-expressing cells. Increased expression of gene pathways mediating EGF receptor signaling, circadian exercise, striated muscle contraction, and lipid and carbohydrate oxidative metabolism were also observed in cKO SOL. This muscle phenotype was not observed in 3-month-old mice. Although Mbtps1 mRNA and protein expression was reduced in cKO bone osteocytes, no differences in Mbtps1 or cre recombinase expression were observed in cKO SOL, explaining this age-related phenotype. Understanding bone-muscle cross-talk may provide a fresh and novel approach to prevention and treatment of age-related muscle loss. PMID:26719336

  4. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    PubMed

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  5. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  6. Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds

    PubMed Central

    Appenteng, K.; Prochazka, A.; Proske, U.; Wand, P.

    1982-01-01

    1. In barbiturate-anaesthetized cats, the L7 and S1 dorsal and ventral roots were dissected to isolate functionally single afferents identified as primary endings of soleus muscle spindles, and motor filaments which exerted a fusimotor action on the afferents with limited action on extrafusal muscle. Up to seven filaments, with an action on a given primary ending, could be isolated and each was classified as exerting either a predominantly dynamic or static action. 2. Combined stimulation of these filaments, at rates up to 200 impulses/s could maintain afferent firing during muscle shortenings at speeds up to 200 mm/s. 3. Fusimotor stimulation could also maintain afferent firing at a target frequency of 100 impulses/s during muscle shortenings up to 200 mm/s. The timing, in relation to the onset of shortening, and the rates of fusimotor stimulation were found to be critical in achieving the target frequency. 4. Sinusoidal modulation of the frequency of fusimotor stimulation was used to study the conditions required to achieve constant afferent firing in the face of imposed sinusoidal length changes. 5. For given depths of modulation, the phase advance of fusimotor stimulation needed to produce minimum modulation of afferent firing (best compensation) increased with increasing frequency of the sinusoids. The compensation deteriorated with an increase in the frequency of the sinusoids and a change in the mean muscle lengths, although in some cases it could be restored by adjustments to the depth of modulation of fusimotor rate. This suggests that for movements of varying speeds and amplitudes, settings which are appropriate for shortening at a given velocity and mean muscle length, do not apply if either of these two variables are altered. 6. These findings demonstrate that the fusimotor system is potentially capable of eliciting constant afferent firing as envisaged in the `servo-assistance' hypothesis (Matthews, 1964, 1972; Stein, 1974). This, and the fact that

  7. Medial Tibial Stress Syndrome: Muscles Located at the Site of Pain

    PubMed Central

    Brown, Ato Ampomah

    2016-01-01

    Objective. The purpose of this study was to examine the relationship between the location of the MTSS pain (posteromedial border of tibia) and the muscles that originate from that site. Method. The study was conducted in the Department of Anatomy of the School of Medical Sciences, University of Cape Coast, and involved the use of 22 cadaveric legs (9 paired and 4 unpaired) from 11 males and 2 females. Findings. The structures that were thus observed to attach directly to the posteromedial border of the tibia were the soleus, the flexor digitorum longus, and the deep crural fascia. The soleus and flexor digitorum longus muscles were observed to attach directly to the posteromedial border of the tibia. The tibialis posterior muscle had no attachment to this site. Conclusion. The findings of this study suggest that if traction is the cause of MTSS then soleus and the flexor digitorum muscles and not the tibialis posterior muscle are the likely cause of MTSS. PMID:27066291

  8. Scale Dependence of Dark Energy Antigravity

    NASA Astrophysics Data System (ADS)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  9. Selected Contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Fluck, M.; Booth, F. W.

    2001-01-01

    This investigation examined the effect of mechanical loading state on focal adhesion kinase (FAK), paxillin, and serum response factor (SRF) in rat skeletal muscle. We found that FAK concentration and tyrosine phosphorylation, paxillin concentration, and SRF concentration are all lower in the lesser load-bearing fast-twitch plantaris and gastrocnemius muscles compared with the greater load-bearing slow-twitch soleus muscle. Of these three muscles, 7 days of mechanical unloading via tail suspension elicited a decrease in FAK tyrosine phosphorylation only in the soleus muscle and decreases in FAK and paxillin concentrations only in the plantaris and gastrocnemius muscles. Unloading decreased SRF concentration in all three muscles. Mechanical overloading (via bilateral gastrocnemius ablation) for 1 or 8 days increased FAK and paxillin concentrations in the soleus and plantaris muscles. Additionally, whereas FAK tyrosine phosphorylation and SRF concentration were increased by < or =1 day of overloading in the soleus muscle, these increases did not occur until somewhere between 1 and 8 days of overloading in the plantaris muscle. These data indicate that, in the skeletal muscles of rats, the focal adhesion complex proteins FAK and paxillin and the transcription factor SRF are generally modulated in association with the mechanical loading state of the muscle. However, the somewhat different patterns of adaptation of these proteins to altered loading in slow- vs. fast-twitch skeletal muscles indicate that the mechanisms and time course of adaptation may partly depend on the prior loading state of the muscle.

  10. Diversity effect of capsaicin on different types of skeletal muscle.

    PubMed

    Zhou, Gan; Wang, Lina; Xu, Yaqiong; Yang, Kelin; Luo, Lv; Wang, Leshan; Li, Yongxiang; Wang, Jiawen; Shu, Gang; Wang, Songbo; Gao, Ping; Zhu, Xiaotong; Xi, Qianyun; Sun, Jiajie; Zhang, Yongliang; Jiang, Qingyan

    2018-06-01

    Capsaicin is a major pungent content in green and red peppers which are widely used as spice, and capsaicin may activate different receptors. To determine whether capsaicin has different effects on different types of skeletal muscle, we applied different concentrations (0, 0.01, and 0.02%) of capsaicin in the normal diet and conducted a four-week experiment on Sprague-Dawley rats. The fiber type composition, glucose metabolism enzyme activity, and different signaling molecules' expressions of receptors were detected. Our results suggested that capsaicin reduced the body fat deposition, while promoting the slow muscle-related gene expression and increasing the enzyme activity in the gastrocnemius and soleus muscles. However, fatty acid metabolism was significantly increased only in the soleus muscle. The study of intracellular signaling suggested that the transient receptor potential vanilloid 1 (TRPV1) and cannabinoid receptors in the soleus muscle were more sensitive to capsaicin. In conclusion, the distribution of TRPV1 and cannabinoid receptors differs in different types of muscle, and the different roles of capsaicin in different types of muscle may be related to the different degrees of activation of receptors.

  11. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy.

    PubMed

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona

    2014-06-01

    Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions.

    PubMed

    Oya, Tomomichi; Riek, Stephan; Cresswell, Andrew G

    2009-10-01

    Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset-offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset-offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.

  13. [Parameters of fibers cell respiration and desmin content in rat soleus muscle at early stages of gravitational unloading].

    PubMed

    Mirzoev, T M; Biriukov, N S; Veselova, O M; Larina, I M; Shenkman, B S; Ogneva, I V

    2012-01-01

    The aim of the work was to study the parameters of fibers cell respiration and desmin content in Wistar rat soleus muscle after 1, 3, 7 and 14 days of gravitational unloading. Gravitational unloading was simulated by antiorthostatic hindlimb suspension. The parameters of cell respiration were determined using the polarography, and desmin content was assessed by means of Western blotting. The results showed that the intensity of cell respiration is reduced after three days of gravitational unloading, reaches a minimum level after seven days and slightly increases by the fourteenth day of hindlimb unloading, as well as the content of desmin, which, however, to the fourteenth day returns to the control level. Taking into account that mitochondrial function depends on the state of cytoskeleton the data allow us to assume that early reduction of the intensity of cell respiration under unloading could be caused by degradation of the protein desmin that determines intracellular localization of mitochondria.

  14. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    PubMed Central

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  15. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  16. Magnitude of sarcomere extension correlates with initial sarcomere length during lengthening of activated single fibers from soleus muscle of rats.

    PubMed

    Panchangam, Appaji; Claflin, Dennis R; Palmer, Mark L; Faulkner, John A

    2008-08-01

    A laser-diffraction technique was developed that rapidly reports the lengths of sarcomeres (L(s)) in serially connected sectors of permeabilized single fibers. The apparatus translates a laser beam along the entire length of a fiber segment within 2 ms, with brief stops at each of 20 contiguous sectors. We tested the hypothesis that during lengthening contractions, when maximally activated fibers are stretched, sectors that contain the longer sarcomeres undergo greater increases in L(s) than those containing shorter sarcomeres. Fibers (n = 16) were obtained from the soleus muscles of adult male rats and the middle portions (length = 1.05 +/- 0.11 mm; mean +/- SD) were investigated. Single stretches of strain 27% and a strain rate of 54% s(-1) were initiated at maximum isometric stress and resulted in a 19 +/- 9% loss in isometric stress. The data on L(s) revealed that 1), the stretch was not distributed uniformly among the sectors, and 2), during the stretch, sectors at long L(s) before the stretch elongated more than those at short lengths. The findings support the hypothesis that during stretches of maximally activated skeletal muscles, sarcomeres at longer lengths are more susceptible to damage by excessive strain.

  17. The role of the extrinsic thoracic limb muscles in equine locomotion.

    PubMed

    Payne, R C; Veenman, P; Wilson, A M

    2005-02-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.

  18. The role of the extrinsic thoracic limb muscles in equine locomotion.

    PubMed

    Payne, R C; Veenman, P; Wilson, A M

    2004-12-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 +/- 17 mm) fascicles, arranged at about 45 degrees to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb.

  19. The role of the extrinsic thoracic limb muscles in equine locomotion

    PubMed Central

    Payne, R C; Veenman, P; Wilson, A M

    2004-01-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15610395

  20. Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness.

    PubMed

    Mathewson, Margie A; Chambers, Henry G; Girard, Paul J; Tenenhaus, Mayer; Schwartz, Alexandra K; Lieber, Richard L

    2014-12-01

    Cerebral palsy (CP), caused by an injury to the developing brain, can lead to alterations in muscle function. Subsequently, increased muscle stiffness and decreased joint range of motion are often seen in patients with CP. We examined mechanical and biochemical properties of the gastrocnemius and soleus muscles, which are involved in equinus muscle contracture. Passive mechanical testing of single muscle fibers from gastrocnemius and soleus muscle of patients with CP undergoing surgery for equinus deformity showed a significant increase in fiber stiffness (p<0.01). Bundles of fibers that included their surrounding connective tissues showed no stiffness difference (p=0.28).). When in vivo sarcomere lengths were measured and fiber and bundle stiffness compared at these lengths, both fibers and bundles of patients with CP were predicted to be much stiffer in vivo compared to typically developing (TD) individuals. Interestingly, differences in fiber and bundle stiffness were not explained by typical biochemical measures such as titin molecular weight (a giant protein thought to impact fiber stiffness) or collagen content (a proxy for extracellular matrix amount). We suggest that the passive mechanical properties of fibers and bundles are thus poorly understood. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    PubMed Central

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  2. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  3. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  4. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    PubMed

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  5. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  6. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  7. Positive inotropism in mammalian skeletal muscle in vitro during and after fatigue.

    PubMed

    Reading, S A; Murrant, C L; Barclay, J K

    2004-04-01

    We tested the hypothesis that positive inotropic factors decrease fatigue and improve recovery from fatigue in mammalian skeletal muscle in vitro. To induce fatigue, we stimulated mouse soleus and extensor digitorum longus (EDL) to perform isometric tetanic contractions (50 impulses x s(-1) for 0.5 s) at 6 contractions x min(-1) for 60 min in soleus and 3 contractions x min(-1) for 20 min in EDL. Muscles were submerged in Krebs-Henseleit bicarbonate solution (Krebs) at 27 degrees C gassed with 95% nitrogen - 5% carbon dioxide (anoxia). Before and for 67 min after the fatigue period, muscles contracted at 0.6 contractions x min(-1) in 95% oxygen - 5% carbon dioxide (hyperoxia). We added a permeable cAMP analog (N6, 2'-O-dibutyryladenosine 3':5'-cyclic monophosphate at 10(-3) mol x L(-1) (dcAMP)), caffeine (2 x 10(-3) mol x L(-1), or Krebs as vehicle control at 25 min before, during, or at the end of the fatigue period. In soleus and EDL, both challenges added before fatigue significantly increased developed force but only caffeine increased developed force when added during the fatigue period. At the end of fatigue, the decrease in force in challenged muscles was equal to or greater than in controls so that the force remaining was the same or less than in controls. EDL challenged with dcAMP or caffeine at any time recovered more force than controls. In soleus, caffeine improved recovery except when added before fatigue. With dcAMP added to soleus, recovery was better after challenges at 10 min and the end of the fatigue period. Thus, increased intracellular concentrations of cAMP and (or) Ca2+ did not decrease fatigue in either muscle but improved recovery from fatigue in EDL and, in some conditions, in soleus.

  8. Effect of Hindlimb Unweighting on Single Soleus Fiber Maximal Shortening Velocity and ATPase Activity

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Fitts, R. H.

    1993-01-01

    This study characterizes the time course of change in single soleus muscle fiber size and function elicited by hindlimb un weighting (HU) and analyzes the extent to which varying durations of HU altered maximal velocity of shortening (V(sub o)), myofibrillar adenosinetriphosphatase (ATPase), and relative content of slow and fast myosin in individual soleus fibers. After 1, 2, or 3 weeks of HU, soleus muscle bundles were prepared and stored in skinning solution at -20 C. Single fibers were isolated and mounted between a motor arm and a transducer, and fiber force, V(sub o), and ATPase activity were measured. Fiber myosin content was determined by one-dimensional sodium dodecyl sulfate- (SDS) polyacrylamide gel electrophoresis. After 1, 2, and 3 weeks of HU, soleus fibers exhibited a progressive reduction in fiber diameter (16, 22, and 42%, respectively) and peak force (42, 48, and 7%, respectively). Peak specific tension was significantly reduced after 1 week of HU (18%) and showed no further change in 2-3 weeks of HU. During 1 and 3 wk of HU, fiber V(sub o) and ATPase showed a significant increase. By 3 week, V(sub o) had increased from 1.32 +/- 0.04 to 2.94 +/- 0.17 fiber lengths/s and fiber ATPase from 291 +/- 16 to 1064 +/- 128 micro-M min(sub -1) mm(sub -3). The percent fibers expressing fast myosin heavy chain increased from 4% to 29% by 3 week of HU, and V(sub o) and ATPase activity within a fiber were highly correlated. However, a large population of fibers after 1, 2, and 3 weeks of HU showed increases in V(sub o) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers. The mechanism eliciting increased fiber V(sub o) and ATPase activity was not obvious but may have been due to increases in fast myosin that went undetected on SDS gels and/or other factors unrelated to the myosin filament.

  9. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat.

    PubMed Central

    Leighton, B; Challiss, R A; Lozeman, F J; Newsholme, E A

    1987-01-01

    1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle. PMID:3318810

  10. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat

    PubMed Central

    Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael

    2014-01-01

    Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766

  11. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  12. The effect of anti-gravity treadmill training for prosthetic rehabilitation of a case with below-knee amputation.

    PubMed

    Mikami, Yukio; Fukuhara, Kouki; Kawae, Toshihiro; Kimura, Hiroaki; Ochi, Mitsuo

    2015-12-01

    The aim of this case study was to verify the efficacy and safety of anti-gravity treadmill training for prosthetic rehabilitation following below-knee amputation. The patient underwent left below-knee amputation as a result of diabetic foot gangrene. Since his physical strength and vitality had declined during the perioperative period, anti-gravity treadmill training was introduced for his outpatient prosthetic rehabilitation. Stable prosthetic gait exercise could be carried out under guidance on the anti-gravity treadmill, quickly resulting in improved gait. Furthermore, the patient's self-efficacy and exercise tolerance were elevated after the period of anti-gravity treadmill training. At the final evaluation following 6 weeks of rehabilitation with the anti-gravity treadmill, he had acquired prosthetic gait with the assistance of a T-cane. The anti-gravity treadmill was found to be a useful instrument for prosthetic rehabilitation following below-knee amputation. Anti-gravity treadmill training has the potential to support the prosthetic rehabilitation of below-knee amputees, especially for patients whose physical strength and vitality are decreased. © The International Society for Prosthetics and Orthotics 2014.

  13. Non-crossbridge calcium-dependent stiffness in slow and fast skeletal fibres from mouse muscle.

    PubMed

    Nocella, Marta; Colombini, Barbara; Bagni, Maria Angela; Bruton, Joseph; Cecchi, Giovanni

    2012-03-01

    We showed previously that force development in frog and FDB mouse skeletal muscle fibres is preceded by an increase of fibre stiffness occurring well before crossbridge attachment and force generation. This stiffness increase, referred to as static stiffness, is due to a Ca(2+)-dependent stiffening of a non-crossbridge sarcomere structure which we suggested could be attributed to the titin filaments. To investigate further the role of titin in static stiffness, we measured static stiffness properties at 24 and 35°C in soleus and EDL mouse muscle fibres which are known to express different titin isoforms. We found that static stiffness was present in both soleus and EDL fibres, however, its value was about five times greater in EDL than in soleus fibres. The rate of development of static stiffness on stimulation increased with temperature and was slightly faster in EDL than in soleus in agreement with previously published data on the time course of the intracellular Ca(2+) transients in these muscles. The present results show that the presence of a non-crossbridge Ca(2+)-dependent stiffening of the muscle fibre is a physiological general characteristic of skeletal muscle. Static stiffness depends on fibre type, being greater and developing faster in fast than in slow fibres. Our observations are consistent with the idea that titin stiffening on contraction improves the sarcomere structure stability. Such an action in fact seems to be more important in EDL fast fibre than in soleus slow fibres.

  14. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    PubMed

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  15. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles

    PubMed Central

    Barclay, C J

    2012-01-01

    The aims of this study were to quantify the Ca2+ release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca2+ release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca2+ release was quantified from the amount of ATP used to remove Ca2+ from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca2+ pump ATP turnover. At 20°C, Ca2+ release in response to a single stimulus was 34 and 84 μmol (kg muscle)−1 for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg−1; EDL, 168 μmol kg−1). Delivery of another stimulus within 100 ms of the first produced a smaller Ca2+ release. The maximum magnitude of the decrease in Ca2+ release was greater in EDL than soleus. Ca2+ release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca2+ released and crossbridge cycles performed are consistent with a scheme in which Ca2+ binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles. PMID:23027818

  16. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise - A 3D finite element analysis.

    PubMed

    Chen, Wen-Ming; Park, Jaeyoung; Park, Seung-Bum; Shim, Victor Phyau-Wui; Lee, Taeyong

    2012-06-26

    The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations

  17. ANG II is required for optimal overload-induced skeletal muscle hypertrophy

    NASA Technical Reports Server (NTRS)

    Gordon, S. E.; Davis, B. S.; Carlson, C. J.; Booth, F. W.

    2001-01-01

    ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.

  18. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    PubMed Central

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P < 0.05) and tetanic force (−43.7% vs. −25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P < 0.05) and force (−45.7 vs. −34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P < 0.05) and soleus (−37.2% vs. −17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P <0.05) and soleus muscle fiber cross-sectional area (−38.7% vs. −10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is

  19. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  20. The role of the extrinsic thoracic limb muscles in equine locomotion

    PubMed Central

    Payne, RC; Veenman, P; Wilson, AM

    2005-01-01

    Muscles have two major roles in locomotion: to generate force and to absorb/generate power (do work). Economical force generation is achieved by short-fibred pennate muscle while the maximum power output of a muscle is architecture independent. In this study we tested the hypothesis that there is an anatomical and structural separation between the force-generating anti-gravity muscles and the propulsive (limb/trunk moving) muscles of the equine forelimb. Muscle mass and fascicle length measurements were made on the thoracic limb extrinsic muscles of six fresh horse cadavers. Physiological cross-sectional area and maximum isometric force were then estimated. Maximum power was estimated from muscle volume and published contraction velocity data. The majority of extrinsic forelimb muscles were large with long fascicles arranged in parallel to the long axis of the muscle. Muscles arranged in this way are optimised for doing work. The architecture of serratus ventralis thoracis (SVT) was unique. It had short (48 ± 17 mm) fascicles, arranged at about 45° to the long axis of the muscle, which would suggest a force-generating, anti-gravity role. The muscle belly of SVT was sandwiched between two broad, thick sheets of aponeurosis. Hence, SVT could make a significant contribution to the overall elastic properties of the thoracic limb. PMID:15730484

  1. Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle

    PubMed Central

    Suwa, Masataka; Nakano, Hiroshi; Radak, Zsolt; Kumagai, Shuzo

    2015-01-01

    It was hypothesized that nitric oxide synthases (NOS) regulated SIRT1 expression and lead to a corresponding changes of contractile and metabolic properties in skeletal muscle. The purpose of the present study was to investigate the influence of long-term inhibition of nitric oxide synthases (NOS) on the fiber-type composition, metabolic regulators such as and silent information regulator of transcription 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and components of mitochondrial biogenesis in the soleus and plantaris muscles of rats. Rats were assigned to two groups: control and NOS inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), ingested for 8 weeks in drinking water)-treated groups. The percentage of Type I fibers in the L-NAME group was significantly lower than that in the control group, and the percentage of Type IIA fibers was concomitantly higher in soleus muscle. In plantaris muscle, muscle fiber composition was not altered by L-NAME treatment. L-NAME treatment decreased the cytochrome C protein expression and activity of mitochondrial oxidative enzymes in the plantaris muscle but not in soleus muscle. NOS inhibition reduced the SIRT1 protein expression level in both the soleus and plantaris muscles, whereas it did not affect the PGC-1α protein expression. L-NAME treatment also reduced the glucose transporter 4 protein expression in both muscles. These results suggest that NOS plays a role in maintaining SIRT1 protein expression, muscle fiber composition and components of mitochondrial biogenesis in skeletal muscle. Key points NOS inhibition by L-NAME treatment decreased the SIRT1 protein expression in skeletal muscle. NOS inhibition induced the Type I to Type IIA fiber type transformation in soleus muscle. NOS inhibition reduced the components of mitochondrial biogenesis and glucose metabolism in skeletal muscle. PMID:26336341

  2. A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus.

    PubMed

    Li, Jinpeng; Kanasaki, Megumi; Xu, Ling; Kitada, Munehiro; Nagao, Kenji; Adachi, Yusuke; Jinzu, Hiroko; Noguchi, Yasushi; Kohno, Miyuki; Kanasaki, Keizo; Koya, Daisuke

    2018-07-01

    Muscle biology is important topic in diabetes research. We have reported that a diet with ketogenic amino acids rich replacement (KAAR) ameliorated high-fat diet (HFD)-induced hepatosteatosis via activation of the autophagy system. Here, we found that a KAAR ameliorated the mitochondrial morphological alterations and associated mitochondrial dysfunction induced by an HFD through induction of the AKT/4EBP1 and autophagy signaling pathways in both fast and slow muscles. The mice were fed with a standard HFD (30% fat in food) or an HFD with KAAR (HFD KAAR ). In both the gastrocnemius and the soleus, HFD KAAR ameliorated HFD-impaired mitochondrial morphology and mitochondrial function, characterized by decreased mitofusin 2, optic atrophy 1, peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α and PPARα levels and increased dynamin-related protein 1 levels. The decreased levels of phosphorylated AKT and 4EBP1 in the gastrocnemius and soleus of HFD-fed mice were remediated by HFD KAAR . Furthermore, the HFD KAAR ameliorated the HFD-induced autophagy defects in the gastrocnemius and soleus. These findings suggest that KAAR may be a novel strategy to combat obesity-induced mitochondrial dysfunction, likely through induction of the AKT/4EBP1 and autophagy pathways in skeletal muscle. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Baseline Muscle Mass Is a Poor Predictor of Functional Overload-Induced Gain in the Mouse Model

    PubMed Central

    Kilikevicius, Audrius; Bunger, Lutz; Lionikas, Arimantas

    2016-01-01

    Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response. The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n = 17), BALB/cByJ (n = 7), DBA/2J (D2, n = 12), B6.A-(rs3676616-D10Utsw1)/Kjn (B6.A, n = 9), C57BL/6J-Chr10A/J/NaJ (B6.A10, n = 8), BEH+/+ (n = 11), BEH (n = 12), and DUHi (n = 12), were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline) varied from 5.2 ± 07 mg soleus and 11.4 ± 1.3 mg plantaris in D2 mice to 18.0 ± 1.7 mg soleus in DUHi and 43.7 ± 2.6 mg plantaris in BEH (p < 0.001 for both muscles). In addition, soleus in the B6.A10 strain was ~40% larger (p < 0.001) compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p < 0.01) and plantaris (p < 0.02) even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth, and maintenance, and

  4. Effects of manipulating tetanic calcium on the curvature of the force-velocity relationship in isolated rat soleus muscles.

    PubMed

    Kristensen, A M; Nielsen, O B; Overgaard, K

    2018-03-01

    In dynamically contracting muscles, increased curvature of the force-velocity relationship contributes to the loss of power during fatigue. It has been proposed that fatigue-induced reduction in [Ca ++ ] i causes this increased curvature. However, earlier studies on single fibres have been conducted at low temperatures. Here, we investigated the hypothesis that curvature is increased by reductions in tetanic [Ca ++ ] i in isolated skeletal muscle at near-physiological temperatures. Rat soleus muscles were stimulated at 60 Hz in standard Krebs-Ringer buffer, and contraction force and velocity were measured. Tetanic [Ca ++ ] i was in some experiments either lowered by addition of 10 μmol/L dantrolene or use of submaximal stimulation (30 Hz) or increased by addition of 2 mmol/L caffeine. Force-velocity curves were constructed by fitting shortening velocity at different loading forces to the Hill equation. Curvature was determined as the ratio a/F 0 with increased curvature reflecting decreased a/F 0 . Compared to control levels, lowering tetanic [Ca ++ ] i with dantrolene or reduced stimulation frequency decreased the curvature slightly as judged from increase in a/F 0 of 13 ± 1% (P = < .001) and 20 ± 2% (P = < .001) respectively. In contrast, increasing tetanic [Ca ++ ] i with caffeine increased the curvature (a/F 0 decreased by 17 ± 1%; P = < .001). Contrary to our hypothesis, interventions that reduced tetanic [Ca ++ ] i caused a decrease in curvature, while increasing tetanic [Ca ++ ] i increased the curvature. These results reject a simple causal relation between [Ca ++ ] i and curvature of the force-velocity relation during fatigue. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Fiber atrophy and hypertrophy in skeletal muscles of late middle-aged Fischer 344 x Brown Norway F1-hybrid rats.

    PubMed

    Hepple, Russell T; Ross, Karen D; Rempfer, Amanda B

    2004-02-01

    We examined young adult and late middle-aged male rats to test the hypothesis that gastrocnemius (a locomotor muscle) demonstrates reduced fiber size with aging, whereas soleus (a postural muscle) demonstrates atrophy of some fibers and compensatory hypertrophy in other fibers. Although body mass was greater in late middle-aged animals, mass was reduced in gastrocnemius but not soleus muscle. In another group of animals, physical activity was reduced by 34% in late middle-aged animals. Whereas mean fiber size was lower in gastrocnemius of late middle-aged animals, it was not different in soleus. Histograms revealed atrophied fibers (soleus and gastrocnemius and hypertrophied fibers (>/=8000 micro m(2)) in soleus with aging. Atrophied fibers often demonstrated no subsarcolemmal mitochondrial staining, suggesting denervation, whereas hypertrophied fibers often demonstrated cytochrome oxidase deficiency, suggesting mitochondrial dysfunction. These results underscore the divergent influences (e.g., physical inactivity, denervation, mitochondrial dysfunction) affecting fiber size with aging.

  6. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  7. Effect of anabolic steroids on skeletal muscle mass during hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Tsika, R. W.; Herrick, R. E.; Baldwin, K. M.

    1987-01-01

    The effect of treatment with an anabolic steroid (nandrolone decanoate) on the muscle mass of plantaris and soleus of a rats in hindlimb suspension, and on the isomyosin expression in these muscles, was investigated in young female rats divided into four groups: normal control (NC), normal steroid (NS), normal suspension (N-sus), and suspension steroid (sus-S). Steroid treatment of suspended animals (sus-S vs N-sus) was found to partially spare body weight and muscle weight, as well as myofibril content of plantaris (but not soleus), but did not modify the isomyosin pattern induced by suspension. In normal rats (NS vs NC), steroid treatment did enhance body weight and plantaris muscle weight; the treatment did not alter isomyosin expression in either muscle type.

  8. [Maximal exercise in spinal cord injured subjects: effects of an antigravity suit].

    PubMed

    Bazzi-Grossin, C; Bonnin, P; Bailliart, O; Bazzi, H; Kedra, A W; Martineaud, J P

    1996-01-01

    Paraplegics have low aerobic capacity because of the spinal cord injury. Their functional muscle mass is reduced and usually untrained. They have to use upperbody muscles for displacements and daily activities. Sympathic nervous system injury is responsible of vasomotricity disturbances in leg vessels and possible abdominal vessels, proportionally to level injury. If cord injury level is higher than T5, then sympathic cardiac efferences may be damaged. Underbody muscles atrophy and vasomotricity disturbances contribute to phlebostasis. This stasis may decrease venous return, preload and stroke volume (Starling). To maintain appropriate cardiac output, tachycardia is necessary, especially during exercise. Low stroke volume, all the more since it is associated with cardio-acceleration disturbances, may reduce cardiac output reserve, and so constitutes a limiting factor for adaptation to exercise. The aim of this study was to verify if use of an underlesional pressure suit may increase cardiac output reserve because of lower venous stasis, and increase performance. We studied 10 able-bodied and 14 traumatic paraplegic subjects. Able-bodied subjects were 37 +/- 6 years old, wellbeing, not especially trained with upperbody muscles: there were 2 women and 8 men. Paraplegics were 27 +/- 7 years old, wellbeing except paraplegia, five of them practiced sport regularly (athletism or basket for disabled), and the others just daily propelled their wheelchair; there were 5 women and 9 men. For 8 of them, cord injury levels were located below T7, between T1 and T6 for the others. The age disability varied from 6 months to 2 years for 9 of them, it was approximately five years for 4 of them, and 20 years for one. We used a maximal triangular arm crank exercise with an electro-magnetic ergocycle Gauthier frame. After five minutes warm up, it was proceeded in one minute successive stages until maximal oxygen consumption is raised. VO2, VCO2, RER were measured by direct method with

  9. Altered soleus responses to magnetic stimulation in pure cerebellar ataxia.

    PubMed

    Kurokawa-Kuroda, Tomomi; Ogata, Katsuya; Suga, Rie; Goto, Yoshinobu; Taniwaki, Takayuki; Kira, Jun-Ichi; Tobimatsu, Shozo

    2007-06-01

    Transcranial magnetic stimulation (TMS) over the leg motor area elicits a soleus primary response (SPR) and a soleus late response (SLR). We evaluated the influence of the cerebellofugal pathway on the SPR and SLR in patients with 'pure' cerebellar ataxia. SPRs and SLRs were recorded from 11 healthy subjects and 9 patients with 'pure' cerebellar cortical degeneration; 5 with spinocerebellar ataxia type 6 (SCA6), and 4 with late cortical cerebellar ataxia (LCCA). In addition, three patients with localized cerebellar lesions were tested. The SPR latency was significantly longer in patients than in controls, but primary responses in the tibialis anterior muscle were normal. The frequency of abnormal SLR was 38.9% in the supine position and 83.3% in the standing position. Two out of three patients with localized cerebellar lesions also showed abnormal SLR. Altered SPRs in patients may result from a dysfunction of the primary motor cortex caused by crossed cerebello-cerebral diaschisis. In addition, our results suggest that 'pure' cerebellar degeneration involves the mechanism responsible for evoking SLR which is related to the control of posture. SLR can be a useful neurophysiological parameter for evaluating cerebellofugal function.

  10. The reflex excitation of the soleus muscle of the decerebrate cat caused by vibration applied to its tendon

    PubMed Central

    Matthews, P. B. C.

    1966-01-01

    1. Vibration was applied longitudinally to the fully innervated soleus muscle of the decerebrate cat by attaching its tendon to a vibrator. Vibration at frequencies of 50-500/sec with amplitudes of 10 μ upwards caused the muscle to contract reflexly for as long as the vibration was maintained. The response was recorded myographically by a myograph mounted upon the vibrator, and electromyographically by gross `belly-tendon' leads. The reflex contraction produced several hundred g wt. of tension and involved too many motor units for their discharges to be separable. The maintained reflex was abolished by making the preparation spinal or by anaesthetizing it with pentobarbitone, but it persisted after removing the cerebellum. 2. The minimum latency for the appearance of the reflex response at the beginning of a period of vibration was about 10 msec. The latency of cessation of the response at the end of vibration was similarly short. 3. On increasing the amplitude of vibration at any particular frequency in the range 100-300/sec the resulting reflex tension increased to an approximate plateau for amplitudes of vibration of 100-200 μ. Further increase in the amplitude decreased the size of the contraction, though there was no such reduction in records of the `integrated' electromyogram. 4. Such large amplitudes of vibration also reduced the tension, and shortened the duration, of a twitch contraction of the muscle elicited by stimulating its nerve. The strength of a tetanic contraction was much less affected by vibration than was that of the twitch contraction, and the muscle action potential elicited by stimulation of the nerve was unaffected. Thus, large-amplitude vibration influenced the contractile mechanism of the muscle (cf. Buchtal & Kaiser, 1951). 5. Increasing the frequency of vibration increased the value of the plateau tension reached on increasing the amplitude. The effect was, however, relatively small and the largest increase seen was 3 g wt. of

  11. Cycling exercise and fetal spinal cord transplantation act synergistically on atrophied muscle following chronic spinal cord injury in rats.

    PubMed

    Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D

    2000-01-01

    The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.

  12. Myosin heavy chain isoform composition and Ca(2+) transients in fibres from enzymatically dissociated murine soleus and extensor digitorum longus muscles.

    PubMed

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2010-01-01

    Electrically elicited Ca(2+) transients reported with the fast Ca(2+) dye MagFluo-4 AM and myosin heavy chain (MHC) electrophoretic patterns were obtained in intact, enzymatically dissociated fibres from adult mice extensor digitorum longus (EDL) and soleus muscles. Thirty nine fibres (23 from soleus and 16 from EDL) were analysed by both fluorescence microscopy and electrophoresis. These fibres were grouped as follows: group 1 included 13 type I and 4 type IC fibres; group 2 included 2 type IIC, 3 IIA and 1 I/IIA/IIX fibres; group 3 included 4 type IIX and 1 type IIX/IIB fibres; group 4 included 2 type IIB/IIX and 9 type IIB fibres. Ca(2+) transients obtained in groups 1, 2, 3 and 4 had the following kinetic parameters (mean +/- s.e.m.): amplitude (F/F): 0.61 +/- 0.05, 0.53 +/- 0.08, 0.61 +/- 0.06 and 0.61 +/- 0.03; rise time (ms): 1.64 +/- 0.05, 1.35 +/- 0.05, 1.18 +/- 0.06 and 1.14 +/- 0.04; half-amplitude width (ms): 19.12 +/- 1.85, 11.86 +/- 3.03, 4.62 +/- 0.31 and 4.23 +/- 0.37; and time constants of decay (tau(1) and tau(2), ms): 3.33 +/- 0.13 and 52.48 +/- 3.93, 2.69 +/- 0.22 and 41.06 +/- 9.13, 1.74 +/- 0.06 and 12.88 +/- 1.93, and 1.56 +/- 0.11 and 9.45 +/- 1.03, respectively. The statistical differences between the four groups and the analysis of the distribution of the parameters of Ca(2+) release and clearance show that there is a continuum from slow to fast, that parallels the MHC continuum from pure type I to pure IIB. However, type IIA fibres behave more like IIX and IIB fibres regarding Ca(2+) release but closer to type I fibres regarding Ca(2+) clearance. In conclusion, we show for the first time the diversity of Ca(2+) transients for the whole continuum of fibre types and correlate this functional diversity with the structural and biochemical diversity of the skeletal muscle fibres.

  13. Diverse effects of Glut 4 ablation on glucose uptake and glycogen synthesis in red and white skeletal muscle.

    PubMed

    Stenbit, A E; Burcelin, R; Katz, E B; Tsao, T S; Gautier, N; Charron, M J; Le Marchand-Brustel, Y

    1996-08-01

    The ability of muscles from Glut 4-null mice to take up and metabolize glucose has been studied in the isolated white EDL and red soleus muscles. In EDL muscles from male or female Glut 4-null mice, basal deoxyglucose uptake was lower than in control muscles and was not stimulated by insulin. In parallel, glycogen synthesis and content were decreased. Soleus muscles from male Glut 4-null mice took up twice more deoxyglucose in the absence of insulin than control muscles, but did not respond to insulin. In females, soleus deoxyglucose uptake measured in the absence of hormone was similar in Glut 4-null mice and in control mice. This uptake was stimulated twofold in Glut 4-null mice and threefold in control mice. Basal glycogen synthesis was increased by 4- and 2.2-fold in male and female null mice, respectively, compared to controls, and insulin had no or small (20% stimulation over basal) effect. These results indicate that while EDL muscles behaved as expected, soleus muscles were able to take up a large amount of glucose in the absence (males) or the presence of insulin (females). Whether this is due to a change in Glut 1 intrinsic activity or targeting and/or to the appearance of another glucose transporter remains to be determined.

  14. Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats.

    PubMed

    Brooks, Naomi E; Schuenke, M D; Hikida, R S

    2009-09-01

    In multinucleated skeletal muscle, a myonuclear domain is the region of cytoplasm governed by one nucleus, and myofibres are mosaics of overlapping myonuclear domains. Association of ageing and myonuclear domain is important in the understanding of sarcopenia and with prevention or combating age-related muscle declines. This study examined the effects of age, fibre type and muscle on nucleo-cytoplasmic (N/C) relationships as reflecting myonuclear domain size. The N/C was compared in fibre types of soleus and plantaris muscles from young (n = 6) and ageing (n = 8) male Fisher 344 rats. There were no significant differences in fibre type composition or cross-sectional area of the soleus across ages. The old soleus had significantly more myonuclei, resulting in a significantly smaller myonuclear domain size. The plantaris muscle showed a higher percentage of slow fibres in old compared with young fibres. There were no differences in the number of myonuclei or in myonuclear domain size between young and older animals. We found muscle-specific differences in the effects of ageing on myonuclear domain, possibly as a result of reduced efficiency of the myonuclei in the slow muscles.

  15. Lower extremity muscle functions during full squats.

    PubMed

    Robertson, D G E; Wilson, Jean-Marie J; St Pierre, Taunya A

    2008-11-01

    The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.

  16. Contractile properties of rat, rhesus monkey, and human type I muscle fibers

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Romatowski, J. G.; Karhanek, M.; Fitts, R. H.

    1997-01-01

    It is well known that skeletal muscle intrinsic maximal shortening velocity is inversely related to species body mass. However, there is uncertainty regarding the relationship between the contractile properties of muscle fibers obtained from commonly studied laboratory animals and those obtained from humans. In this study we determined the contractile properties of single chemically skinned fibers prepared from rat, rhesus monkey, and human soleus and gastrocnemius muscle samples under identical experimental conditions. All fibers used for analysis expressed type I myosin heavy chain as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Allometric coefficients for type I fibers from each muscle indicated that there was little change in peak tension (force/fiber cross-sectional area) across species. In contrast, both soleus and gastrocnemius type I fiber maximal unloaded shortening velocity (Vo), the y-intercept of the force-velocity relationship (Vmax), peak power per unit fiber length, and peak power normalized for fiber length and cross-sectional area were all inversely related to species body mass. The present allometric coefficients for soleus fiber Vo (-0.18) and Vmax (-0.11) are in good agreement with published values for soleus fibers obtained from common laboratory and domesticated mammals. Taken together, these observations suggest that the Vo of slow fibers from quadrupeds and humans scale similarly and can be described by the same quantitative relationships. These findings have implications in the design and interpretation of experiments, especially those that use small laboratory mammals as a model of human muscle function.

  17. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  18. Antigravity Suits For Studies Of Weightlessness

    NASA Technical Reports Server (NTRS)

    Kravik, Stein E.; Greenleaf, John

    1992-01-01

    Report presents results of research on use of "antigravity" suit, one applying positive pressure to lower body to simulate some effects of microgravity. Research suggests lower-body positive pressure is alternative to bed rest or immersion in water in terrestrial studies of cardioregulatory, renal, electrolyte, and hormonal changes induced in humans by microgravity.

  19. Response of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Concentrations of glutamine, glutamate, aspartate (+ asparagine) and alanine were compared in hindlimb muscles of SL-3 and ground control rats. Alanine was lower in the soleus of flown rats but not of suspended animals, with no response in other muscles except a slight increase in the unloaded plantaris. With recovery, alanine in the soleus was elevated. Since no differences in alanine metabolism were found by isolated muscle, changes in muscle alanine are probably due to altered body use of this amino acid leading to varied plasma levels.

  20. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    PubMed

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (< 3% of the fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  1. Mouse Plantar Flexor Muscle Size and Strength After Inactivity and Training

    DTIC Science & Technology

    2010-07-01

    suspension. Keywords: eccentric contraction , microgravity , exercise . SPACEFLIGHT CAUSES atrophy and strength loss in antigravity skeletal muscles...isometric, concentric, and eccentric contractions pre- served muscle mass in the rat medial gastrocnemius ( 2 ), the use of isometric resistance exercise ...Adams GR , Haddad F , Bodell PW , Tran PD , Baldwin KM . Com- bined isometric, concentric, and eccentric resistance exercise prevents

  2. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  3. Vibration-induced muscle injury. An experimental model and preliminary findings.

    PubMed

    Necking, L E; Dahlin, L B; Fridén, J; Lundborg, G; Lundström, R; Thornell, L E

    1992-06-01

    The hind paws of rats were subjected to vibration at a frequency of 80 Hz., an acceleration of 32 m./s.2 rms (i.e. ah.w approximately 6.3 m./s.2 rms) for five hours daily during five consecutive days. Morphological, histochemical and immunohistochemical analyses of the soleus, extensor digitorum longus and the plantar muscles in the vibrated limb and the contralateral control limb were performed. No changes were seen in the soleus or extensor digitorum longus muscles but different degrees of degeneration of the muscle fibres were seen in the plantar muscle sections as well as signs of regeneration. No changes were observed in the contralateral unexposed limb. It is concluded that it is not only nervous tissue but also muscle tissue that can be affected by vibration. The changes seem to be confined to muscles close to the vibration exciter.

  4. Up-regulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle

    PubMed Central

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T.; Li, Charles; Katz, Abram; Wedderburn, Lucy R.; Nagaraju, Kanneboyina; Lundberg, Ingrid E.; Westerblad, Håkan

    2008-01-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment; we used transgenic mice with inducible over-expression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared to control mice, however when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. PMID:19229963

  5. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance

    PubMed Central

    Baudry, Stéphane; Duchateau, Jacques

    2012-01-01

    This study investigated the modulation of Ia afferent input in young and elderly adults during quiet upright stance in normal and modified visual and proprioceptive conditions. The surface EMG of leg muscles, recruitment curve of the soleus (SOL) Hoffmann (H) reflex and presynaptic inhibition of Ia afferents from SOL, assessed with the D1 inhibition and single motor unit methods, were recorded when young and elderly adults stood with eyes open or closed on two surfaces (rigid vs. foam) placed over a force platform. The results showed that elderly adults had a longer path length for the centre of pressure and larger antero-posterior body sway across balance conditions (P < 0.05). Muscle EMG activities were greater in elderly compared with young adults (P < 0.05), whereas the Hmax expressed as a percentage of the Hmax was lower (P = 0.048) in elderly (38 ± 16%) than young adults (58 ± 16%). The conditioned H reflex/test H reflex ratio (D1 inhibition method) increased with eye closure and when standing on foam (P < 0.05), with greater increases for elderly adults (P = 0.019). These changes were accompanied by a reduced peak motor unit discharge probability when standing on rigid and foam surfaces (P ≤ 0.001), with a greater effect for elderly adults (P = 0.026). Based on these latter results, the increased conditioned H reflex/test H reflex ratio in similar sensory conditions is likely to reflect occlusion at the level of presynaptic inhibitory interneurones. Together, these findings indicate that elderly adults exhibit greater modulation of Ia presynaptic inhibition than young adults with variation in the sensory conditions during upright standing. PMID:22946095

  6. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers

    PubMed Central

    Li, Jinling; Guan, Buyun; Tang, Hongmei

    2018-01-01

    Objective To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. Methods This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. Results The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). Conclusions Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle. PMID:29304114

  7. Comparison of calf muscle architecture between Asian children with spastic cerebral palsy and typically developing peers.

    PubMed

    Chen, Ying; He, Lu; Xu, Kaishou; Li, Jinling; Guan, Buyun; Tang, Hongmei

    2018-01-01

    To compare the muscle thickness, fascicle length, and pennation angle of the gastrocnemius, soleus, and tibialis anterior between Asian children with spastic cerebral palsy (CP) and typically developing (TD) peers. This cross-sectional study involved a total of 72 children with hemiplegic CP (n = 24), and diplegic CP (n = 24) and their TD peers (n = 24). Muscle architecture was measured at rest using ultrasound. Clinical measures included gross motor function and a modified Ashworth scale. The thicknesses of the tibialis anterior and medial gastrocnemius muscles were smaller in the affected calf of children with CP (p<0.05) than in those of their TD peers. Additionally, the lengths of the lateral gastrocnemius and soleus fascicle were shorter (p<0.05) in children with diplegic CP than in their TD peers. The fascicle length was shorter in the affected calf of children with CP (p<0.05) than in the calves of their TD peers or the unaffected calf of children with hemiplegic CP. However, the length of the lateral gastrocnemius fascicle was similar between the two legs of children with hemiplegic CP. The pennation angles of the medial gastrocnemius and soleus muscles were larger (p<0.05) in the affected calf in children with hemiplegic CP than in the calves of their TD peers. The fascicle length of the lateral gastrocnemius and the thickness of the soleus muscle were positively correlated with gross motor function scores in children with CP (p<0.05). Muscle thickness and fascicle length were lower in the affected tibialis anterior, gastrocnemius, and soleus in children with spastic CP. These changes may limit the ability to stand and walk, and indicate a need to strengthen the affected muscle.

  8. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  9. A comparison of rat myosin from fast and slow skeletal muscle and the effect of disuse

    NASA Technical Reports Server (NTRS)

    Unsworth, B. R.; Witzmann, F. A.; Fitts, R. H.

    1981-01-01

    Certain enzymatic and structural features of myosin, purified from rat skeletal muscles representative of the fast twitch glycolytic (type IIb), the fast twitch oxidative (type IIa), and the slow twitch oxidative (type I) fiber, were determined and the results were compared with the measured contractile properties. Good correlation was found between the shortening velocities and Ca(2+)-activated ATPase activity for each fiber type. Short term hind limb immobilization caused prolongation of contraction time and one-half relaxation time in the fast twitch muscles and a reduction of these contractile properties in slow twitch soleus. Furthermore, the increased maximum shortening velocity in the immobilized soleus could be correlated with increased Ca(2+)-ATPase, but no change was observed in the enzymatic activity of the fast twitch muscles. No alteration in light chain distribution with disuse was observed in any of the fiber types. The myosin from slow twitch soleus could be distinguished from fast twitch myosins on the basis of the pattern of peptides generated by proteolysis of the heavy chains. Six weeks of hind limb immobilization resulted in both an increased ATPase activity and an altered heavy chain primary structure in the slow twitch soleus muscle.

  10. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age

    PubMed Central

    Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng

    2016-01-01

    The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats. PMID:27076782

  11. Soleus Atrophy Is Common After the Nonsurgical Treatment of Acute Achilles Tendon Ruptures: A Randomized Clinical Trial Comparing Surgical and Nonsurgical Functional Treatments.

    PubMed

    Heikkinen, Juuso; Lantto, Iikka; Flinkkila, Tapio; Ohtonen, Pasi; Niinimaki, Jaakko; Siira, Pertti; Laine, Vesa; Leppilahti, Juhana

    2017-05-01

    It remains controversial whether nonsurgical or surgical treatment provides better calf muscle strength recovery after an acute Achilles tendon rupture (ATR). Recent evidence has suggested that surgery might surpass nonsurgical treatment in restoring strength after an ATR. To assess whether magnetic resonance imaging (MRI) findings could explain calf muscle strength deficits and the difference between nonsurgical and surgical treatments in restoring calf muscle strength. Randomized controlled trial; Level of evidence, 1. From 2009 to 2013, 60 patients with acute ATRs were randomized to surgery or nonsurgical treatment with an identical rehabilitation protocol. The primary outcome measure was the volume of calf muscles assessed using MRI at 3 and 18 months. The secondary outcome measures included fatty degeneration of the calf muscles and length of the affected Achilles tendon. Additionally, isokinetic plantarflexion strength was measured in both legs. At 3 months, the study groups showed no differences in muscle volumes or fatty degeneration. However, at 18 months, the mean differences between affected and healthy soleus muscle volumes were 83.2 cm 3 (17.7%) after surgery and 115.5 cm 3 (24.8%) after nonsurgical treatment (difference between means, 33.1 cm 3 ; 95% CI, 1.3-65.0; P = .042). The study groups were not substantially different in the volumes or fatty degeneration of other muscles. From 3 to 18 months, compensatory hypertrophy was detected in the flexor hallucis longus (FHL) and deep flexors in both groups. In the nonsurgical treatment group, the mean difference between affected and healthy FHL muscle volumes was -9.3 cm 3 (12%) and in the surgical treatment group was -8.4 cm 3 (10%) ( P ≤ .001). At 18 months, Achilles tendons were, on average, 19 mm longer in patients treated nonsurgically compared with patients treated surgically ( P < .001). At 18 months, surgically treated patients demonstrated 10% to 18% greater strength results ( P = .037). Calf

  12. Mysterious Anti-Gravity and Dark-Essence

    NASA Astrophysics Data System (ADS)

    Gu, Je-An

    2013-12-01

    The need of anti-gravity and dark-essence in cosmology is the greatest scientific mystery in the 21st century. This paper presents a personal view of several relevant issues, including the long-standing cosmological constant problem, the newly emerging dark radiation issue, and the basic stability issue of the general-relativity limit in modified gravity.

  13. Mysterious Anti-Gravity and Dark-Essence

    NASA Astrophysics Data System (ADS)

    Gu, Je-An

    2013-01-01

    The need of anti-gravity and dark-essence in cosmology is the greatest scientific mystery in the 21st century. This paper presents a personal view of several relevant issues, including the long-standing cosmological constant problem, the newly emerging dark radiation issue, and the basic stability issue of the general-relativity limit in modified gravity.

  14. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles

    NASA Technical Reports Server (NTRS)

    Muller-Delp, Judy; Spier, Scott A.; Ramsey, Michael W.; Lesniewski, Lisa A.; Papadopoulos, Anthony; Humphrey, J. D.; Delp, Michael D.

    2002-01-01

    Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.

  15. Use of an antigravity treadmill for rehabilitation of a pelvic stress injury.

    PubMed

    Tenforde, Adam S; Watanabe, Laine M; Moreno, Tamara J; Fredericson, Michael

    2012-08-01

    Pelvic stress injuries are a relatively uncommon form of injury that require high index of clinician suspicion and usually MRI for definitive diagnosis. We present a case report of a 21-year-old female elite runner who was diagnosed with pelvic stress injury and used an antigravity treadmill during rehabilitation. She was able to return to pain-free ground running at 8 weeks after running at 95% body weight on the antigravity treadmill. Ten weeks from time of diagnosis, she competed at her conference championships and advanced to the NCAA Championships in the 10,000-meters. She competed in both races without residual pain. To our knowledge, this is the first published case report on use of an antigravity treadmill in rehabilitation of bone-related injuries. Our findings suggest that use of an antigravity treadmill for rehabilitation of a pelvic stress injury may result in appropriate bone loading and healing during progression to ground running and faster return to competition. Future research may identify appropriate protocols for recovery from overuse lower extremity injuries and other uses for this technology, including neuromuscular recovery and injury prevention. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Outcome of patients after lower limb fracture with partial weight bearing postoperatively treated with or without anti-gravity treadmill (alter G®) during six weeks of rehabilitation - a protocol of a prospective randomized trial.

    PubMed

    Henkelmann, Ralf; Schneider, Sebastian; Müller, Daniel; Gahr, Ralf; Josten, Christoph; Böhme, Jörg

    2017-03-14

    Partial or complete immobilization leads to different adjustment processes like higher risk of muscle atrophy or a decrease of general performance. The present study is designed to prove efficacy of the anti-gravity treadmill (alter G®) compared to a standard rehabilitation protocol in patients with tibial plateau (group 1)or ankle fractures (group 2) with six weeks of partial weight bearing of 20 kg. This prospective randomized study will include a total of 60 patients for each group according to predefined inclusion and exclusion criteria. 1:1 randomization will be performed centrally via fax supported by the Clinical Trial Centre Leipzig (ZKS Leipzig). Patients in the treatment arm will be treated with an anti-gravity treadmill (alter G®) instead of physiotherapy. The protocol is designed parallel to standard physiotherapy with a frequency of two to three times of training with the treadmill per week with duration of 20 min for six weeks. Up to date no published randomized controlled trial with an anti-gravity treadmill is available. The findings of this study can help to modify rehabilitation of patients with partial weight bearing due to their injury or postoperative protocol. It will deliver interesting results if an anti-gravity treadmill is useful in rehabilitation in those patients. Further ongoing studies will identify different indications for an anti-gravity treadmill. Thus, in connection with those studies, a more valid statement regarding safety and efficacy is possible. NCT02790229 registered on May 29, 2016.

  17. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  18. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-25

    ISS038-E-035473 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  19. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-25

    ISS038-E-035476 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  20. Wakata wearing Penguin-3 Antigravity Pressure/Stress Suit

    NASA Image and Video Library

    2014-01-24

    ISS038-E-035470 (24 Jan. 2014) --- Japan Aerospace Exploration Agency astronaut Koichi Wakata, Expedition 38 flight engineer, is pictured wearing the Penguin-3 antigravity pressure/stress suit in the Kibo laboratory of the International Space Station.

  1. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    PubMed Central

    Sanchez, B; Li, J; Bragos, R; Rutkove, S B

    2014-01-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. PMID:24743385

  2. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    NASA Astrophysics Data System (ADS)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  3. Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF-I treatment

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Linderman, J. K.; Grindeland, R. E.; Roy, R. R.; Mukku, V. R.; Edgerton, V. R.

    1998-01-01

    The purpose of this study was to determine the effects of functional overload (FO) combined with growth hormone/insulin-like growth factor I (GH/IGF-I) administration on myonuclear number and domain size in rat soleus muscle fibers. Adult female rats underwent bilateral ablation of the plantaris and gastrocnemius muscles and, after 7 days of recovery, were injected three times daily for 14 days with GH/IGF-I (1 mg/kg each; FO + GH/IGF-I group) or saline vehicle (FO group). Intact rats receiving saline vehicle served as controls (Con group). Muscle wet weight was 32% greater in the FO than in the Con group: 162 +/- 8 vs. 123 +/- 16 mg. Muscle weight in the FO + GH/IGF-I group (196 +/- 14 mg) was 59 and 21% larger than in the Con and FO groups, respectively. Mean soleus fiber cross-sectional area of the FO + GH/IGF-I group (2,826 +/- 445 microm2) was increased compared with the Con (2,044 +/- 108 microm2) and FO (2,267 +/- 301 microm2) groups. The difference in fiber size between the FO and Con groups was not significant. Mean myonuclear number increased in FO (187 +/- 15 myonuclei/mm) and FO + GH/IGF-I (217 +/- 23 myonuclei/mm) rats compared with Con (155 +/- 12 myonuclei/mm) rats, although the difference between FO and FO + GH/IGF-I animals was not significant. The mean cytoplasmic volume per myonucleus (myonuclear domain) was similar across groups. These results demonstrate that the larger mean muscle weight and fiber cross-sectional area occurred when FO was combined with GH/IGF-I administration and that myonuclear number increased concomitantly with fiber volume. Thus there appears to be some mechanism(s) that maintains the myonuclear domain when a fiber hypertrophies.

  4. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

    PubMed

    Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan

    2003-12-01

    The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the

  5. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  6. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent.

    PubMed

    Porter, Craig; Constantin-Teodosiu, Dumitru; Constantin, Despina; Leighton, Brendan; Poucher, Simon M; Greenhaff, Paul L

    2017-09-01

    Meldonium inhibits endogenous carnitine synthesis and tissue uptake, and accelerates urinary carnitine excretion, although the impact of meldonium-mediated muscle carnitine depletion on whole-body fuel selection, and muscle fuel metabolism and its molecular regulation is under-investigated. Ten days of oral meldonium administration did not impact on food or fluid intake, physical activity levels or body weight gain in the rat, whereas it depleted muscle carnitine content (all moieties), increased whole-body carbohydrate oxidation and muscle and liver glycogen utilization, and reduced whole-body fat oxidation. Meldonium reduced carnitine transporter protein expression across muscles of different contractile and metabolic phenotypes. A TaqMan PCR low-density array card approach revealed the abundance of 189 mRNAs regulating fuel selection was altered in soleus muscle by meldonium, highlighting the modulation of discrete cellular functions and metabolic pathways. These novel findings strongly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. The body carnitine pool is primarily confined to skeletal muscle, where it regulates carbohydrate (CHO) and fat usage. Meldonium (3-(2,2,2-trimethylhydrazinium)-propionate) inhibits carnitine synthesis and tissue uptake, although the impact of carnitine depletion on whole-body fuel selection, muscle fuel metabolism and its molecular regulation is under-investigated. Male lean Zucker rats received water (control, n = 8) or meldonium-supplemented water (meldonium, n = 8) for 10 days [1.6 g kg -1 body mass (BM) day -1 days 1-2, 0.8 g kg -1  BM day -1 thereafter]. From days 7-10, animals were housed in indirect calorimetry chambers after which soleus muscle and liver were harvested. Food and fluid intake, weight gain and physical activity levels were similar between groups from days 7 to 10. Compared to control, meldonium depleted muscle total carnitine (P < 0

  8. Soleus aponeurosis strain distribution following chronic unloading in humans: an in vivo MR phase-contrast study.

    PubMed

    Lee, Hae-Dong; Finni, Taija; Hodgson, John A; Lai, Alex M; Edgerton, V Reggie; Sinha, Shantanu

    2006-06-01

    The in vivo strain properties of human skeletal muscle-tendon complexes are poorly understood, particularly following chronic periods of reduced load bearing. We studied eight healthy volunteers who underwent 4 wk of unilateral lower limb suspension (ULLS) to induce chronic unloading. Before and after the ULLS, maximum isometric ankle plantar flexion torque was determined by using a magnetic resonance (MR)-compatible dynamometry. Volumes of the triceps surae muscles and strain distribution of the soleus aponeurosis and the Achilles tendon at a constant submaximal plantar flexion (20% pre-maximal voluntary contraction) were measured by using MRI and velocity-encoded, phase-contrast MRI techniques. Following ULLS, volumes of the soleus and the medial gastrocnemius and the maximum isometric ankle plantar flexion (maximum voluntary contraction) decreased by 5.5+/-1.9, 7.5+/-2.7, and 48.1+/-6.1%, respectively. The strain of the aponeurosis along the length of the muscle before the ULLS was 0.3+/-0.3%, ranging from -1.5 to 2.7% in different locations of the aponeurosis. Following ULLS, the mean strain was -6.4+/-0.3%, ranging from -1.6 to 1.3%. The strain distribution of the midregion of the aponeurosis was significantly influenced by the ULLS, whereas the more distal component showed no consistent changes. Achilles tendon strain was not affected by the ULLS. These results raise the issue as to whether these changes in strain distribution affect the functional properties of the triceps surae and whether the probability of strain injuries within the triceps surae increases following chronic unloading in those regions of this muscle complex in which unusual strains occur.

  9. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    PubMed

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  10. Effect of NT-4 and BDNF delivery to damaged sciatic nerves on phenotypic recovery of fast and slow muscles fibres.

    PubMed

    Simon, Magda; Porter, Rebecca; Brown, Robert; Coulton, Gary R; Terenghi, Giorgio

    2003-11-01

    We investigated whether neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) affected the reinnervation of slow and fast motor units. Neurotrophin-impregnated or plain fibronectin (FN) conduits were inserted into a sciatic nerve gap. Fast extensor digitorum longus (EDL) and slow soleus muscles were collected 4 months postsurgery. Muscles were weighed and fibre type proportion and mean fibre diameters were derived from muscle cross-sections. All fibre types in muscles from FN animals were severely atrophied and this correlated well with type 1 fibre loss and atrophy in soleus and type 2b loss and atrophy in EDL. Treatment with NT-4 reversed soleus but not EDL mass loss above the FN group by significantly restoring type 1 muscle fibre proportion and diameters towards those of normal unoperated animals. BDNF did not increase muscle mass but did have minor effects on fibre type and diameter. Thus, NT-4 significantly improved slow motor unit recovery, and provides a basis for therapies intended to aid the functional recovery of muscles after denervating injury.

  11. Physical exercise during muscle regeneration improves recovery of the slow/oxidative phenotype.

    PubMed

    Koulmann, Nathalie; Richard-Bulteau, Hélène; Crassous, Brigitte; Serrurier, Bernard; Pasdeloup, Marielle; Bigard, Xavier; Banzet, Sébastien

    2017-01-01

    As skeletal muscle mass recovery after extensive injury is improved by contractile activity, we explored whether concomitant exercise accelerates recovery of the contractile and metabolic phenotypes after muscle injury. After notexin-induced degeneration of a soleus muscle, Wistar rats were assigned to active (running exercise) or sedentary groups. Myosin heavy chains (MHC), metabolic enzymes, and calcineurin were studied during muscle regeneration at different time points. The mature MHC profile recovered earlier in active rats (21 days after injury) than in sedentary rats (42 days). Calcineurin was higher in the active degenerated than in the sedentary degenerated muscles at day 14. Citrate synthase and total lactate dehydrogenase (LDH) activity decreased after injury and were similarly recovered in both active and sedentary groups at 14 or 42 days, respectively. H-LDH isozyme activity recovered earlier in the active rats. Exercise improved recovery of the slow/oxidative phenotype after soleus muscle injury. Muscle Nerve 55: 91-100, 2017. © 2016 Wiley Periodicals, Inc.

  12. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running.

    PubMed Central

    Eston, R G; Mickleborough, J; Baltzopoulos, V

    1995-01-01

    An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767

  13. Acute increases in intraluminal pressure improve vasodilator responses in aged soleus muscle feed arteries.

    PubMed

    Seawright, John W; Luttrell, Meredith J; Woodman, Christopher R

    2014-10-01

    We tested the hypothesis that exposure to an acute increase in intraluminal pressure, to mimic pressure associated with a bout of exercise, improves nitric oxide (NO)-mediated endothelium-dependent dilation in aged soleus muscle feed arteries (SFA) and that improved endothelial function would persist after a 2 h recovery period. SFA from young (4-month) and old (24-month) Fischer 344 rats were cannulated and pressurized at 90 (P90) or 130 (P130) cmH2O for 60 min. At the end of the treatment period, pressure in the P130 SFA was lowered to 90 cmH2O for examination of endothelium-dependent [flow or acetylcholine (ACh)] and endothelium-independent [sodium nitroprusside (SNP)] vasodilation. To determine the role of NO, vasodilator responses were assessed in the presence of N (ω)-nitro-L-arginine (L-NNA). To determine whether the effects of pressure persisted following a recovery period at normal pressure, SFA were pressurized to 130 cmH2O for 60 min and subsequently lowered to 90 cmH2O for 2 h before assessing function. ACh- and flow-induced dilations were impaired in old SFA. Treatment with increased pressure for 60 min improved ACh- and flow-induced dilations in old SFA. SNP-induced dilation was improved in old and young SFA. The beneficial effect of pressure treatment on ACh- and flow-induced dilation in old SFA was blocked by L-NNA and was not present following a 2 h recovery period. These results indicate that an acute increase in intraluminal pressure improves NO-mediated endothelium-dependent dilation in aged SFA; however, the beneficial effect does not persist after 2 h.

  14. Short-Term Motor Compensations to Denervation of Feline Soleus and Lateral Gastrocnemius Result in Preservation of Ankle Mechanical Output during Locomotion

    PubMed Central

    Prilutsky, Boris I.; Maas, Huub; Bulgakova, Margarita; Hodson-Tole, Emma F.; Gregor, Robert J.

    2011-01-01

    Denervation of selected ankle extensors in animals results in locomotor changes. These changes have been suggested to permit preservation of global kinematic characteristics of the hindlimb during stance. The peak ankle joint moment is also preserved immediately after denervation of several ankle extensors in the cat, suggesting that the animal's response to peripheral nerve injury may also be aimed at preserving ankle mechanical output. We tested this hypothesis by comparing joint moments and power patterns during walking before and after denervation of soleus and lateral gastrocnemius muscles. Hindlimb kinematics, ground reaction forces and electromyographic activity of selected muscles were recorded during level, downslope (−50%) and upslope (50%) walking before and 1–3 weeks after nerve denervation. Denervation resulted in increased activity of the intact medial gastrocnemius and plantaris muscles, greater ankle dorsiflexion, smaller knee flexion, and the preservation of the peak ankle moment during stance. Surprisingly, ankle positive power generated in the propulsion phase of stance was increased (up to 50%) after denervation in all walking conditions (p < 0.05). The obtained results suggest that the short-term motor compensation to denervation of lateral gastrocnemius and soleus muscles may allow for preservation of mechanical output at the ankle. The additional mechanical energy generated at the ankle during propulsion can result, in part, from increased activity of intact synergists, the use of passive tissues around the ankle and by the tendon action of ankle two-joint muscles and crural fascia. PMID:21411965

  15. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of

  16. Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles.

    PubMed

    Ikezoe, Tome; Mori, Natsuko; Nakamura, Masatoshi; Ichihashi, Noriaki

    2012-01-01

    This study investigated the effects of age and inactivity due to being chronically bedridden on atrophy of trunk muscles. The subjects comprised 33 young women (young group) and 41 elderly women who resided in nursing homes or chronic care institutions. The elderly subjects were divided into two groups: independent elderly group who were able to perform activities of daily living involving walking independently (n = 28) and dependent elderly group who were chronically bedridden (n = 13). The thickness of the following six trunk muscles was measured by B-mode ultrasound: the rectus abdominis, external oblique, internal oblique, transversus abdominis, thoracic erector spinae (longissimus) and lumbar multifidus muscles. All muscles except for the transversus abdominis and lumbar multifidus muscles were significantly thinner in the independent elderly group compared with those in the young group. The thicknesses of all muscles in the dependent elderly group was significantly smaller than that in the young group, whereas there were no differences between the dependent elderly and independent elderly groups in the muscle thicknesses of the rectus abdominis and internal oblique muscles. In conclusion, our results suggest that: (1) age-related atrophy compared with young women was less in the deep antigravity trunk muscles than the superficial muscles in the independent elderly women; (2) atrophy associated with chronic bed rest was more marked in the antigravity muscles, such as the back and transversus abdominis.

  17. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    PubMed Central

    Ferris, Daniel P; Aagaard, Per; Simonsen, Erik B; Farley, Claire T; Dyhre-Poulsen, Poul

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses. A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level. We recorded EMG from eight subjects walking (1.25 m s−1) and running (3.0 m s−1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by ≈30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9%Mmax) than running (-2.5%Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion. PMID:11136869

  18. Soleus H-reflex gain in humans walking and running under simulated reduced gravity

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Aagaard, P.; Simonsen, E. B.; Farley, C. T.; Dyhre-Poulsen, P.

    2001-01-01

    The Hoffmann (H-) reflex is an electrical analogue of the monosynaptic stretch reflex, elicited by bypassing the muscle spindle and directly stimulating the afferent nerve. Studying H-reflex modulation provides insight into how the nervous system centrally modulates stretch reflex responses.A common measure of H-reflex gain is the slope of the relationship between H-reflex amplitude and EMG amplitude. To examine soleus H-reflex gain across a range of EMG levels during human locomotion, we used simulated reduced gravity to reduce muscle activity. We hypothesised that H-reflex gain would be independent of gravity level.We recorded EMG from eight subjects walking (1.25 m s-1) and running (3.0 m s-1) at four gravity levels (1.0, 0.75, 0.5 and 0.25 G (Earth gravity)). We normalised the stimulus M-wave and resulting H-reflex to the maximal M-wave amplitude (Mmax) elicited throughout the stride to correct for movement of stimulus and recording electrodes relative to nerve and muscle fibres. Peak soleus EMG amplitude decreased by 30% for walking and for running over the fourfold change in gravity. As hypothesised, slopes of linear regressions fitted to H-reflex versus EMG data were independent of gravity for walking and running (ANOVA, P > 0.8). The slopes were also independent of gait (P > 0.6), contrary to previous studies. Walking had a greater y-intercept (19.9% Mmax) than running (-2.5% Mmax; P < 0.001). At all levels of EMG, walking H-reflex amplitudes were higher than running H-reflex amplitudes by a constant amount. We conclude that the nervous system adjusts H-reflex threshold but not H-reflex gain between walking and running. These findings provide insight into potential neural mechanisms responsible for spinal modulation of the stretch reflex during human locomotion.

  19. Skeletal muscle plasticity with marathon training in novice runners.

    PubMed

    Luden, N; Hayes, E; Minchev, K; Louis, E; Raue, U; Conley, T; Trappe, S

    2012-10-01

    The purpose of this study was to investigate leg muscle adaptation in runners preparing for their first marathon. Soleus and vastus lateralis (VL) biopsies were obtained from six recreational runners (23 ± 1 years, 61 ± 3 kg) before (T1), after 13 weeks of run training (T2), and after 3 weeks of taper and marathon (T3). Single muscle fiber size, contractile function (strength, speed, and power) and oxidative enzyme activity [citrate synthase (CS)] were measured at all three time points, and fiber type distribution was determined before and after the 16-week intervention. Training increased VO(2max) ∼9% (P<0.05). All soleus parameters were unchanged. VL MHC I fiber diameter increased (+8%; P<0.05) from T1 to T2. VL MHC I V(o) (-12%), MHC I power (-22%) and MHC IIa power (-29%) were reduced from T1 to T2 (P<0.05). No changes in VL single fiber contractile properties were observed from T2 to T3. No change was observed in soleus CS activity, whereas VL CS activity increased 66% (P<0.05). Our observations indicate that modest marathon training elicits very specific skeletal muscle adaptations that likely support the ability to perform 42.2 km of continuous running - further strengthening the existing body of evidence for skeletal muscle specificity. © 2011 John Wiley & Sons A/S.

  20. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance

    PubMed Central

    Feng, Han-Zhong; Jin, J.-P.

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout (Car3-KO) mice. The loss of CAIII in soleus and TA muscles in Car3-KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3-KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3-KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1-KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3-KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies. PMID:28018233

  1. Carbonic Anhydrase III Is Expressed in Mouse Skeletal Muscles Independent of Fiber Type-Specific Myofilament Protein Isoforms and Plays a Role in Fatigue Resistance.

    PubMed

    Feng, Han-Zhong; Jin, J-P

    2016-01-01

    Carbonic anhydrase III (CAIII) is a metabolic enzyme and a regulator for intracellular pH. CAIII has been reported with high level expression in slow twitch skeletal muscles. Here we demonstrate that CAIII is expressed in multiple slow and fast twitch muscles of adult mouse independent of the expression of myosin isoforms. Expressing similar fast type of myofilament proteins, CAIII-positive tibial anterior (TA) muscle exhibits higher tolerance to fatigue than that of CAIII-negative fast twitch extensor digitorum longus (EDL) muscle in in situ contractility studies. We further studied the muscles of CAIII knockout ( Car3 -KO) mice. The loss of CAIII in soleus and TA muscles in Car3 -KO mice did not change muscle mass, sarcomere protein isoform contents, and the baseline twitch and tetanic contractility as compared with age-matched wild type (WT) controls. On the other hand, Car3 -KO TA muscle showed faster force reduction at the beginning but higher resistance at the end during a fatigue test, followed by slower post fatigue recovery than that of WT TA muscle. Superfused Car3 -KO soleus muscle also had faster total force reduction during fatigue test than that of WT soleus. However, it showed a less elevation of resting tension followed by a better post fatigue recovery under acidotic stress. CAIII was detected in neonatal TA and EDL muscle, downregulated during development, and then re-expressed in adult TA but not EDL muscles. The expression of CAIII in Tnnt1 -KO myopathy mouse soleus muscle that has diminished slow fiber contents due to the loss of slow troponin T remained high. Car3 -KO EDL, TA, and soleus muscles showed no change in the expression of mitochondria biomarker proteins. The data suggest a fiber type independent expression of CAIII with a role in the regulation of intracellular pH in skeletal muscle and may be explored as a target for improving fatigue resistance and for the treatment of TNNT1 myopathies.

  2. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  3. The effects of sarcopenia on muscles with different recruitment patterns and myofiber profiles.

    PubMed

    Deschenes, Michael R; Gaertner, Jennifer R; O'Reilly, Shaelyn

    2013-12-01

    Sarcopenia, or the age-related loss of muscle size/mass, is a major health concern in western societies where aging is prevalent. Currently, more is known about sarcopenia's impact on health and quality of life, than its physiological etiology. It remains to be clearly determined whether the onset and progression of sarcopenia is similar throughout the body (systemic), or is more localized to certain muscles and myofiber types comprising those muscles (local). The objective of this project was to quantify the systemic vs. local nature of sarcopenia. Three muscles of different myofiber type composition and/or function (Soleus, Plantaris, EDL) were collected from 10 young adult rats, and 10 aged rats. Immunohistochemical procedures were then performed on frozen muscle sections to determine average myofiber size, fiber type composition, and relative areas of muscles occupied by each myofiber type. Significant (P ≤ 0.05) overall age-related myofiber atrophy occurred in the predominantly fast-twitch, non-postural Plantaris and EDL muscles, but not in the primarily slow-twitch, postural Soleus. Moreover, age-related atrophy was significantly (~100%) greater in the EDL than the Plantaris. Age-related myofiber type conversion also demonstrated muscle specificity in that all fiber types were affected in the Soleus, compared to three of the four myofiber types of the Plantaris, and only one of the four myofiber types identified in the EDL. In sum, these data suggest that although sarcopenia may be ubiquitous among skeletal muscles, the degree of its impact displays specificity based not only on myofiber type composition, but also on muscle function.

  4. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats

    PubMed Central

    Hao, Yanlei; Jackson, Janna R.; Wang, Yan; Edens, Neile; Pereira, Suzette L.

    2011-01-01

    β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial

  5. β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats.

    PubMed

    Hao, Yanlei; Jackson, Janna R; Wang, Yan; Edens, Neile; Pereira, Suzette L; Alway, Stephen E

    2011-09-01

    β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial

  6. Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy.

    PubMed

    Reid, Duncan; McNair, Peter J; Johnson, Shelley; Potts, Geoff; Witvrouw, Erik; Mahieu, Nele

    2012-08-01

    To compare surface electromyographic (EMG) activity of the gastrocnemius and soleus muscles between persons with and without Achilles tendinopathy (AT) during an eccentric muscle exercise in different knee joint positions. Repeated measures design. Research laboratory. Participants (n = 18) diagnosed with AT and 18 control subjects were recruited. Gastrocnemius and soleus muscle activity was examined by surface (EMG) during extended and flexed knee joint conditions while performing the eccentric training technique. The EMG data were expressed as a percentage of a maximum voluntary contraction (MVC). EMG activity was notably higher (mean difference: 10%, effect size: 0.59) in those subjects with AT. Irrespective of the presence of AT, there was a significant interaction effect between muscle and joint position. The gastrocnemius muscle was significantly more active in the extended knee condition and soleus muscle activity was unchanged across joint positions. The results indicated that the presence of AT influenced calf muscle activity levels during performance of the eccentric exercise. There were differences in muscle activity during the extended and flexed knee conditions. This result does support performing Alfredson, Pietila, Jonsson, and Lorentzon (1998) eccentric exercise in an extended knee position but the specific effects of the knee flexed position on the Achilles tendon during eccentric exercise have yet to be determined, particularly in those with AT. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Curcumin counteracts loss of force and atrophy of hindlimb unloaded rat soleus by hampering neuronal nitric oxide synthase untethering from sarcolemma

    PubMed Central

    Vitadello, Maurizio; Germinario, Elena; Ravara, Barbara; Libera, Luciano Dalla; Danieli-Betto, Daniela; Gorza, Luisa

    2014-01-01

    Antioxidant administration aimed to antagonize the development and progression of disuse muscle atrophy provided controversial results. Here we investigated the effects of curcumin, a vegetal polyphenol with pleiotropic biological activity, because of its ability to upregulate glucose-regulated protein 94 kDa (Grp94) expression in myogenic cells. Grp94 is a sarco-endoplasmic reticulum chaperone, the levels of which decrease significantly in unloaded muscle. Rats were injected intraperitoneally with curcumin and soleus muscle was analysed after 7 days of hindlimb unloading or standard caging. Curcumin administration increased Grp94 protein levels about twofold in muscles of ambulatory rats (P < 0.05) and antagonized its decrease in unloaded ones. Treatment countered loss of soleus mass and myofibre cross-sectional area by approximately 30% (P ≤ 0.02) and maintained a force–frequency relationship closer to ambulatory levels. Indexes of muscle protein and lipid oxidation, such as protein carbonylation, revealed by Oxyblot, and malondialdehyde, measured with HPLC, were significantly blunted in unloaded treated rats compared to untreated ones (P = 0.01). Mechanistic involvement of Grp94 was suggested by the disruption of curcumin-induced attenuation of myofibre atrophy after transfection with antisense grp94 cDNA and by the drug-positive effect on the maintenance of the subsarcolemmal localization of active neuronal nitric oxide synthase molecules, which were displaced to the sarcoplasm by unloading. The absence of additive effects after combined administration of a neuronal nitric oxide synthase inhibitor further supported curcumin interference with this pro-atrophic pathway. In conclusion, curcumin represents an effective and safe tool to upregulate Grp94 muscle levels and to maintain muscle function during unweighting. PMID:24710058

  8. Effects of simulated microgravity on microRNA and mRNA expression profile of rat soleus

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Wu, Feng; Qu, Lina

    Abstract Spaceflight induces muscle atrophy but mechanism is not well understood. Here, we quantified microRNAs (miRNAs) and mRNA shifts of rat soleus after 7, 14 and 28 days tail suspension (TS). Microarray data revealed that TS altered 23 miRNAs and 1313 mRNAs at least 2-fold change. QRT-PCR confirmed changes of miRNAs and mRNAs related to muscle atrophy. MiR-214, miR-486-5p and miR-320 family decreased, but Let-7e increased. Actn3 and myh4 displayed abundant upregulation and a3galt2 downregulated. Predicted targeted genes (whyz, ywhaz and SFRP2) of altered miRNAs decreased. Further analysis of gene functional annotation confirmed consistency of alteration profile between miRNAs and mRNA and enrichment of main clusters in regulation of muscle metabolism. Our results highlight the importance of miR-214, miR-486-5p, miR-320 and Let-7e in muscle atrophy process induced by microgravity.

  9. The influence of rat suspension-hypokinesia on the gastrocnemius muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Leconey, T.; Hagler, H.; Glasberg, M.

    1984-01-01

    Hind-limb hypokinesia was induced in rats by the Morey method to characterize the response of the gastrocnemius muscle. A comparison of rats suspended for 2 weeks with weight, sex, and litter-matched control rats indicate no difference in gastrocnemius wet weight, contraction, or one-half relaxation times, but less contractile function as indicated by lowered dP/dt. Myosin ATPase staining identified uniform Type I (slow-twitch) and II (fast-twitch) atrophy in the muscles from 4 of 10 rats suspended for 2 weeks and 1 of 12 rats suspended for 4 weeks; muscles from three other rats of the 4-week group displayed greater Type I atrophy. Other histochemical changes were characteristic of a neuropathy. These data together with recently acquired soleus data (29) indicate the Morey model, like space flight, evokes greater changes in the Type I or slow twitch fibers of the gastrocnemius and soleus muscles.

  10. Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Trappe, S. W.; Romatowski, J. G.; Riley, D. A.; Costill, D. L.; Fitts, R. H.

    2002-01-01

    We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.

  11. Disuse atrophy, plasma corticosterone, and muscle glucocorticoid receptor levels

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1987-01-01

    The effect of whole-body suspension on the time course and the extent of plasma corticosterone changes and the tissue sensitivity to glucocorticoids were investigated in rats subjected to seven days of whole-body suspension. Plasma corticosterone increased significantly on the first and the third days of suspension, but returned to control levels by day seven. Muscle glucocorticoid receptors exhibited a characteristic hormonal specificity (evaluated in competitive-displacement experiments). In controls, receptor site concentration in the slow-twitch soleus was comparable to that in the fast-twitch gastrocnemius and plantaris, but was significantly less than in the extensor; seven days of suspension resulted in significant differential effects on muscle receptor levels. The largest increase in receptor concentration was observed in the soleus in which it remained elevated after the receptor levels in other muscles returned to normal.

  12. Acetyl-L-carnitine supplementation to old rats partially reverts the age-related mitochondrial decay of soleus muscle by activating peroxisome proliferator-activated receptor gamma coactivator-1alpha-dependent mitochondrial biogenesis.

    PubMed

    Pesce, Vito; Fracasso, Flavio; Cassano, Pierluigi; Lezza, Angela Maria Serena; Cantatore, Palmiro; Gadaleta, Maria Nicola

    2010-01-01

    The age-related decay of mitochondrial function is a major contributor to the aging process. We tested the effects of 2-month-daily acetyl-L-carnitine (ALCAR) supplementation on mitochondrial biogenesis in the soleus muscle of aged rats. This muscle is heavily dependent on oxidative metabolism. Mitochondrial (mt) DNA content, citrate synthase activity, transcript levels of some nuclear- and mitochondrial-coded genes (cytochrome c oxidase subunit IV [COX-IV], 16S rRNA, COX-I) and of some factors involved in the mitochondrial biogenesis signaling pathway (peroxisome proliferator-activated receptor gamma [PPARgamma] coactivator-1alpha [PGC-1alpha], mitochondrial transcription factor A mitochondrial [TFAM], mitochondrial transcription factor 2B [TFB2]), as well as the protein content of PGC-1alpha were determined. The results suggest that the ALCAR treatment in old rats activates PGC-1alpha-dependent mitochondrial biogenesis, thus partially reverting the age-related mitochondrial decay.

  13. Adaptations of mouse skeletal muscle to low intensity vibration training

    PubMed Central

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  14. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    PubMed

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  15. Effects of N-acetylcysteine on isolated skeletal muscle contractile properties after an acute bout of aerobic exercise.

    PubMed

    Jannig, Paulo R; Alves, Christiano R R; Voltarelli, Vanessa A; Bozi, Luiz H M; Vieira, Janaina S; Brum, Patricia C; Bechara, Luiz R G

    2017-12-15

    The current study tested the hypotheses that 1) an acute bout of aerobic exercise impairs isolated skeletal muscle contractile properties and 2) N-acetylcysteine (a thiol antioxidant; NAC) administration can restore the impaired muscle contractility after exercise. At rest or immediately after an acute bout of aerobic exercise, extensor digitorum longus (EDL) and soleus muscles from male Wistar rats were harvested for ex vivo skeletal muscle contraction experiments. Muscles from exercised animals were incubated in Krebs Ringer's buffer in absence or presence of 20mM of NAC. Force capacity and fatigue properties were evaluated. Exercised EDL and soleus displayed lower force production across various stimulation frequencies (p<0.001), indicating that skeletal muscle force production was impaired after an acute bout of exercise. However, NAC treatment restored the loss of force production in both EDL and soleus after fatiguing exercise (p<0.05). Additionally, NAC treatment increased relative force production at different time points during a fatigue-induced protocol, suggesting that NAC treatment mitigates fatigue induced by successive contractions. NAC treatment improves force capacity and fatigue properties in ex vivo skeletal muscle from rats submitted to an acute bout of aerobic exercise. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Metabolite concentrations in skeletal muscle of different aged rats submitted to hypoxia and pharmacological treatment with nicergoline.

    PubMed

    Pastoris, O; Foppa, P; Catapano, M; Dossena, M

    1998-06-01

    The energy metabolism of the gastrocnemius and soleus muscles in young-adult, mature, and senescent rats was evaluated after 72 h of continuous exposure to normobaric hypoxia or normoxia. The effects of treatment with the alpha-adrenergic antagonist nicergoline were also investigated. In the gastrocnemius muscle we evaluated the concentrations of some significative metabolites involved in anaerobic glycolysis and the Krebs' cycle, free amino acids related to the Krebs' cycle, ammonia, some energy mediators, and the energy store creatine phosphate. In the soleus muscle a selection of these was evaluated. In both muscles aging was similarly characterized by a decrease in muscular creatine phosphate concentration, while the energy mediators and the energy charge potential remained unchanged. Singly, some gastrocnemius muscle metabolites showed linear changes in their concentrations with aging, while for the soleus muscle the only linear change regarded glucose-6-phosphate. Continuous normobaric hypoxia induced greater changes at the age of 4 and 24 months than at 12 months. Chronic treatment with nicergoline modified the influence of hypoxic conditions on muscle metabolites concentrations only in some cases, regardless of the age of the animals. Further investigations are necessary before any firm conclusions can be drawn about the pharmacological activity of nicergoline on hypoxia in aged rats.

  17. Magnetic Resonance Imaging (MRI) of skeletal muscles in astronauts after 9 days of space flight

    NASA Technical Reports Server (NTRS)

    Jaweed, M.; Narayana, P.; Slopis, J.; Butler, I.; Schneider, V.; Leblanc, A.; Fotedar, L.; Bacon, D.

    1992-01-01

    Skylab data indicated that prolonged exposure of human subjects to microgravity environment causes significant muscle atrophy accompanied by reduced muscle strength and fatigue resistance. The objective of this study was to determine decrements in muscle size, if any, in the soleus and gastrocnemius muscles of male and female astronauts after 9 days of space flight. Methods: Eight astronauts, one female and seven male, between the ages of 31 and 59 years 59-84 kg in body weight were examined by MRI 2-3 times preflight within 16 days before launch, and 2 days, (n=6) and seven days (n=3) after landing. The right leg muscles (gastroc-soleus) were imaged with a lower extremity coil in magnets operating at 1.0 or 1.5 Tsela. The imaging protocol consisted of spin echo with a Tr of 0.70 - 1.5 sec. Thirty to forty 3-5 mm thick slices were acquired in 256 x 128 or 256 x 256 matrices. Acquisition time lasted 20-40 minutes. Multiple slices were measured by computerized planimetry. Results: Compared to the preflight, the cross-sectoral areas (CSA) of the soleus, gastrocnemius, and the leg, at 2 days after landing were reduced (at least p less than 0.05) 8.9 percent, 13.2 percent, and 9.5 percent respectively. The soleus and the leg of three astronauts evaluated at 7 days postflight did not show full recovery compared to the preflight values. Conclusions: It is concluded that l9-days of space flight may cause significant decreases in CSA of the leg muscles. The factors responsible for this loss need further determination.

  18. Jumping in aquatic environment after sciatic nerve compression: nociceptive evaluation and morphological characteristics of the soleus muscle of Wistar rats.

    PubMed

    Malanotte, Jéssica Aline; Kakihata, Camila Mayumi Martin; Karvat, Jhenifer; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Bertolini, Gladson Ricardo Flor

    2017-01-01

    To evaluate the effect of jumping in aquatic environment on nociception and in the soleus muscle of trained and not trained Wistar rats, in the treatment of compressive neuropathy of the sciatic nerve. Twenty-five Wistar rats were distributed into five groups: Control, Lesion, Trained + Lesion, Lesion + Exercise, and Trained + Lesion + Exercise. The training was jumping exercise in water environment for 20 days prior to injury, and treatment after the injury. Nociception was evaluated in two occasions, before injury and seven after injury. On the last day of the experiment, the right soleus muscles were collected, processed and analyzed as to morphology and morphometry. In the assessment of nociception in the injury site, the Control Group had higher average than the rest, and the Lesion Group was larger than the Trained + Lesion and Lesion + Exercise Groups. The Control Group showed higher nociceptive threshold in paw, compared to the others. In the morphometric analysis, in relation to Control Group, all the injured groups showed decreased muscle fiber area, and in the Lesion Group was lower than in the Lesion + Exercise Group and Trained + Lesion Group. Considering the diameter of the muscle fiber, the Control Group had a higher average than the Trained + Lesion Group and the Trained + Lesion + Exercise Group; and the Lesion Group showed an average lower than the Trained + Lesion and Lesion + Exercise Groups. Resistance exercise produced increased nociception. When performed prior or after nerve damage, it proved effective in avoiding hypotrophy. The combination of the two protocols led to decrease in diameter and area of the muscle fiber. Avaliar os efeitos do salto em meio aquático, na nocicepção e no músculo sóleo, em ratos Wistar treinados e não treinados, no tratamento de neuropatia compressiva do nervo isquiático. Foram distribuídos em cinco grupos 25 ratos Wistar: Controle, Lesão, Treinado + Lesão, Lesão + Exercício e Treinado + Lesão + Exerc

  19. Onset of rigor mortis is earlier in red muscle than in white muscle.

    PubMed

    Kobayashi, M; Takatori, T; Nakajima, M; Sakurada, K; Hatanaka, K; Ikegaya, H; Matsuda, Y; Iwase, H

    2000-01-01

    Rigor mortis is thought to be related to falling ATP levels in muscles postmortem. We measured rigor mortis as tension determined isometrically in three rat leg muscles in liquid paraffin kept at 37 degrees C or 25 degrees C--two red muscles, red gastrocnemius (RG) and soleus (SO) and one white muscle, white gastrocnemius (WG). Onset, half and full rigor mortis occurred earlier in RG and SO than in WG both at 37 degrees C and at 25 degrees C even though RG and WG were portions of the same muscle. This suggests that rigor mortis directly reflects the postmortem intramuscular ATP level, which decreases more rapidly in red muscle than in white muscle after death. Rigor mortis was more retarded at 25 degrees C than at 37 degrees C in each type of muscle.

  20. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  1. Differential response of skeletal muscles to mTORC1 signaling during atrophy and hypertrophy

    PubMed Central

    2013-01-01

    Background Skeletal muscle mass is determined by the balance between protein synthesis and degradation. Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of protein translation and has been implicated in the control of muscle mass. Inactivation of mTORC1 by skeletal muscle-specific deletion of its obligatory component raptor results in smaller muscles and a lethal dystrophy. Moreover, raptor-deficient muscles are less oxidative through changes in the expression PGC-1α, a critical determinant of mitochondrial biogenesis. These results suggest that activation of mTORC1 might be beneficial to skeletal muscle by providing resistance to muscle atrophy and increasing oxidative function. Here, we tested this hypothesis by deletion of the mTORC1 inhibitor tuberous sclerosis complex (TSC) in muscle fibers. Method Skeletal muscles of mice with an acute or a permanent deletion of raptor or TSC1 were examined using histological, biochemical and molecular biological methods. Response of the muscles to changes in mechanical load and nerve input was investigated by ablation of synergistic muscles or by denervation . Results Genetic deletion or knockdown of raptor, causing inactivation of mTORC1, was sufficient to prevent muscle growth and enhance muscle atrophy. Conversely, short-term activation of mTORC1 by knockdown of TSC induced muscle fiber hypertrophy and atrophy-resistance upon denervation, in both fast tibialis anterior (TA) and slow soleus muscles. Surprisingly, however, sustained activation of mTORC1 by genetic deletion of Tsc1 caused muscle atrophy in all but soleus muscles. In contrast, oxidative capacity was increased in all muscles examined. Consistently, TSC1-deficient soleus muscle was atrophy-resistant whereas TA underwent normal atrophy upon denervation. Moreover, upon overloading, plantaris muscle did not display enhanced hypertrophy compared to controls. Biochemical analysis indicated that the atrophy response of muscles was based on the

  2. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  3. Interosseous nerve transfers for tibialis anterior muscle paralysis (foot drop): a human cadaver-based feasibility study.

    PubMed

    Pirela-Cruz, Miguel A; Hansen, Uel; Terreros, Daniel A; Rossum, Alfred; West, Priscilla

    2009-03-01

    This study explored the anatomical feasibility of using an interosseous nerve transfer (routed between the tibia and fibula) to restore motor function to the tibialis anterior (TA) muscle, following injury to the common peroneal nerve (resulting in a foot drop). The specific nerve branches evaluated as possible donor nerves included the nerves to the medial gastrocnemius, the lateral gastrocnemius, and the soleus muscles. All nerve transfers were accomplished using a direct interosseous route and a direct repair (one medial gastrocnemius transfer did require interpositional grafting). The distance from the repair site to the TA muscle was shortest for the transfer using the nerve branch to the soleus. Histologically, the nerve branch to the soleus was most similar to the branch to the TA for both axonal count and cross-sectional area. A two-incision surgical approach using a fibular window (mobilizing a fibular segment after double osteotomy) and interosseous routing of the transfer is proposed.

  4. Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Seider, M. J.

    1979-01-01

    During immobilization, skeletal muscle undergoes decreases in size and strength with concomitant atrophic and degenerative changes in slow-twitch muscle fibers. Currently there are no objective data in slow-twitch muscle demonstrating recovery of biochemical or physiological indices following termination of immobilization. The purpose of this study was to determine whether the soleus, a slow-twitch muscle, could recover normal biochemical or physiological levels following termination of immobilization. Adenosine triphosphate, glycogen, and protein concentration (mg/g wet wt) all significantly decreased following 90 days of hindlimb immobilization, but these three values returned to control levels by the 60th recovery day. Similarly, soleus muscle wet weight and protein content (mg protein/muscle) returned to control levels by the 14th recovery day. In contrast, maximal isometric tension did not return to normal until the 120th day. These results indicate that following muscular atrophy, which was achieved through 90 days of hindlimb immobilization, several biochemical and physiological values in skeletal muscle are recovered at various times after the end of immobilization.

  5. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.

    PubMed

    Clausen, T; Overgaard, K; Nielsen, O B

    2004-02-01

    Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.

  6. Antigravity posture for analysis of motor unit recruitment: the "45 degree test".

    PubMed

    Petajan, J H

    1990-04-01

    The maximum number of different motor unit action potentials (MUAPs), their firing rates, and total MUAP spikes/second recorded by monopolar needle electrode were determined for the biceps brachii muscle during 45-degree elbow flexion. There were 4.2 +/- 1.6 different MUAPs exceeding 100 microV. Mean firing rate was 10.0 +/- 1.7 Hz, and total MUAP spikes/second were 40.3 +/- 18. Recordings from 16 patients with neurogenic atrophy (NA) and just detectable weakness revealed corresponding values of 3.1 +/- 1.7 different MUAPs, a mean rate of 10.2 +/- 1.5 Hz and 30.6 +/- 19 total MUAP spikes/second, not different from normal. In these patients, increased force of muscle contraction was required to activate high threshold motor units firing at high rates. In each of 4 patients just able to hold the arm against gravity, 1 or 2 "overdriven" motor units firing at a mean rate greater than 20 Hz were recorded. In 8 patients with myopathy and just detectable weakness, greater than 100 total MUAP spikes/second were recorded. Antigravity posture as a reference level of innervation has the advantage that motor unit firing rate is set about that of physiologic tremor (10-13 Hz). Its application was helpful in quantifying recruitment.

  7. Clinical Functional Capacity Testing in Patients With Facioscapulohumeral Muscular Dystrophy: Construct Validity and Interrater Reliability of Antigravity Tests.

    PubMed

    Rijken, Noortje H; van Engelen, Baziel G; Weerdesteyn, Vivian; Geurts, Alexander C

    2015-12-01

    To evaluate the construct validity and interrater reliability of 4 simple antigravity tests in a small group of patients with facioscapulohumeral muscular dystrophy (FSHD). Case-control study. University medical center. Patients with various severity levels of FSHD (n=9) and healthy control subjects (n=10) were included (N=19). Not applicable. A 4-point ordinal scale was designed to grade performance on the following 4 antigravity tests: sit to stance, stance to sit, step up, and step down. In addition, the 6-minute walk test, 10-m walking test, Berg Balance Scale, and timed Up and Go test were administered as conventional tests. Construct validity was determined by linear regression analysis using the Clinical Severity Score (CSS) as the dependent variable. Interrater agreement was tested using a κ analysis. Patients with FSHD performed worse on all 4 antigravity tests compared with the controls. Stronger correlations were found within than between test categories (antigravity vs conventional). The antigravity tests revealed the highest explained variance with regard to the CSS (R(2)=.86, P=.014). Interrater agreement was generally good. The results of this exploratory study support the construct validity and interrater reliability of the proposed antigravity tests for the assessment of functional capacity in patients with FSHD taking into account the use of compensatory strategies. Future research should further validate these results in a larger sample of patients with FSHD. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  9. Postural adjustments associated with voluntary contraction of leg muscles in standing man.

    PubMed

    Nardone, A; Schieppati, M

    1988-01-01

    The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early

  10. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    PubMed

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  11. Problems in analysis of data from muscles of rats flow in space

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik; Jacob, Stephan; Satarug, Soisungwan; Cook, Paul

    1988-01-01

    Comparison of hind-limb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading postflight might have altered the results. Soleus atrophied; plantaris, gastrocnemius, and extensor digitorum longus grew slower; and tibialis anteiror grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that 12 h of reloading after flight is characterized by reversal, to varying extents, of the effects of unloading.

  12. Problems in analysis of data from muscles of rats flown in space

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E.; Jacob, S.; Satarug, S.; Cook, P.

    1988-01-01

    Comparison of hindlimb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading post-flight might have altered the results. Soleus atrophied, plantaris, gastrocnemius and extensor digitorum longus grew slower, and tibialis anterior grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that at 12 h of reloading after flight is characterized by reversal to varying extents of effects of unloading.

  13. Immobilization rapidly induces thioredoxin-interacting protein (TXNIP) gene expression together with insulin resistance in rat skeletal muscle.

    PubMed

    Kawamoto, Emi; Tamakoshi, Keigo; Ra, Song-Gyu; Masuda, Hiroyuki; Kawanaka, Kentaro

    2018-05-24

    Acute short-duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Since thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-hr hindlimb immobilization by plaster cast. At the end of this period, the soleus muscles from both immobilized and contralateral non-immobilized hindlimbs were excised and examined. The 6-hr immobilization resulted in an increase in TXNIP mRNA and protein expressions together with a decrease in insulin-stimulated 2-deoxyglucose uptake in the rat soleus muscle. Additionally, in the rats sacrificed 6 hr after the plaster cast removal, TXNIP protein expression and insulin-stimulated glucose uptake in the immobilized muscle had both been restored to a normal level. Various interventions (pretreatment with transcription inhibitor actinomycin D or AMPK activator AICAR) also suppressed the increase in TXNIP protein expression in 6-hr-immobilized muscle together with partial prevention of insulin resistance for glucose uptake. These results suggested the possibility that increased TXNIP protein expression in immobilized rat soleus muscles was associated with the rapid induction of insulin resistance for glucose uptake in that tissue.

  14. Effect of angular velocity on soleus and medial gastrocnemius H-reflex during maximal concentric and eccentric muscle contraction.

    PubMed

    Duclay, Julien; Robbe, Alice; Pousson, Michel; Martin, Alain

    2009-10-01

    At rest, the H-reflex is lower during lengthening than shortening actions. During passive lengthening, both soleus (SOL) and medial gastrocnemius (MG) H-reflex amplitudes decrease with increasing angular velocity. This study was designed to investigate whether H-reflex amplitude is affected by angular velocity during concentric and eccentric maximal voluntary contraction (MVC). Experiments were performed on nine healthy men. At a constant angular velocity of 60 degrees /s and 20 degrees /s, maximal H-reflex and M-wave potentials were evoked at rest (i.e., H(max) and M(max), respectively) and during concentric and eccentric MVC (i.e., H(sup) and M(sup), respectively). Regardless of the muscle, H(max)/M(max) was lower during lengthening than shortening actions and the H(sup)/M(sup) ratio was higher than H(max)/M(max) during lengthening actions. Whereas no action type and angular velocity effects on the MG H(sup)/M(sup) were found, the SOL H(sup)/M(sup) was lower during eccentric than concentric MVC and this depression was increased with higher angular velocity. Our findings indicate that the depression of the H-reflex amplitude during eccentric compared to concentric MVC depends mainly on the amount of inhibition induced by lengthening action. In conclusion, H-reflex should be evoked during both passive and active dynamic trials to evaluate the plasticity of the spinal loop.

  15. Time Course of the Response of Myofibrillar and Sarcoplasmic Protein Metabolism to Unweighting of the Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Munoz, Kathryn A.; Satarug, Soisungwan; Tischler, Marc E.

    1993-01-01

    Contributions of altered in vivo protein synthesis and degradation to unweighting atrophy of the soleus muscle in tail-suspended young female rats were analyzed daily for up to 6 days. Specific changes in myofibrillar and sarcoplasmic proteins were also evaluated to assess their contributions to the loss of total protein. Synthesis of myofibrillar and sarcoplasmic proteins was estimated by intramuscular (IM) injection and total protein by intraperitoneal (IP) injection of flooding doses of H-3-phenylaianine. Total protein loss was greatest during the first 3 days following suspension and was a consequence of the loss of myofibrillar rather than sarcoplasmic proteins. However, synthesis of total myofibrillar and sarcoplasmic proteins diminished in parallel beginning in the first 24 hours. Therefore sarcoplasmic proteins must be spared due to a decrease in their degradation. In contrast, myofibrillar protein degradation increased, thus explaining the elevated degradation of the total pool. Following 72 hours of suspension, protein synthesis remained low, but the rate of myofibrillar protein loss diminished, suggesting a slowing of degradation. These various results show acute loss of protein during unweighting atrophy is a consequence of decreased synthesis and increased degradation of myofibrillar proteins, and sarcoplasmic proteins are spared due to slower degradation, likely explaining the sparing of plasma membrane receptors. Based on other published data, we propose that the slowing of atrophy after the initial response may be attributed to an increased effect of insulin.

  16. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    PubMed

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  17. The embryonic genes Dkk3, Hoxd8, Hoxd9 and Tbx1 identify muscle types in a diet-independent and fiber-type unrelated way.

    PubMed

    de Wilde, Janneke; Hulshof, Martijn F M; Boekschoten, Mark V; de Groot, Philip; Smit, Egbert; Mariman, Edwin C M

    2010-03-15

    The mouse skeletal muscle is composed of four distinct fiber types that differ in contractile function, number of mitochondria and metabolism. Every muscle type has a specific composition and distribution of the four fiber types. To find novel genes involved in specifying muscle types, we used microarray analysis to compare the gastrocnemius with the quadriceps from mice fed a low fat diet (LFD) or high fat diet (HFD) for 8 weeks. Additional qPCR analysis were performed in the gastrocnemius, quadriceps and soleus muscle from mice fed an LFD or HFD for 20 weeks. In mice fed the 8-week LFD 162 genes were differentially expressed in the gastrocnemius vs. the quadriceps. Genes with the strongest differences in expression were markers for oxidative fiber types (e.g. Tnni1) and genes which are known to be involved in embryogenesis (Dkk3, Hoxd8,Hoxd9 and Tbx1). Also Dkk2, Hoxa5, Hoxa10, Hoxc9, Hoxc10, Hoxc6 and Tbx15 were detectably, but not differentially expressed in adult muscle tissue. Expression of differentially expressed genes was not influenced by an 8-week or 20-week HFD. Comparing gastrocnemius, quadriceps and soleus, expression of Hoxd8 and Hoxd9 was not related with expression of markers for the four different fiber types. We found that the expression of both Hoxd8 and Hoxd9 was much higher in the gastrocnemius than in the quadriceps or soleus, whereas the expression of Dkk3 was high in quadriceps, but low in both gastrocnemius and soleus. Finally, expression of Tbx1 was high in quadriceps, intermediate in soleus and low in gastrocnemius. We found that genes from the Dkk family, Hox family and Tbx family are detectably expressed in adult mouse muscle. Interestingly, expression of Dkk3, Hoxd8, Hoxd9 and Tbx1 was highly different between gastrocnemius, quadriceps and soleus. In fact, every muscle type showed a unique combination of expression of these four genes which was not influenced by diet. Altogether, we conclude that genes important for embryogenesis

  18. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients

    PubMed Central

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-01-01

    [Purpose] The anti-gravity treadmill (Alter-G®) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy. PMID:28878480

  19. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.

    PubMed

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-08-01

    [Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.

  20. Differential half-maximal effects of human insulin and its analogs for in situ glucose transport and protein synthesis in rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Weinstein, Randi B.; Eleid, Noura; LeCesne, Catherine; Durando, Bianca; Crawford, Julie T.; Heffner, Michelle; Layton, Christle; O'Keefe, Matthew; Robinson, Jennifer; Rudinsky, Suzy; hide

    2002-01-01

    Analogs of human insulin have been used to discriminate between responses of metabolic and mitogenic (growth-related) pathways. This study compared the stimulatory effects of human insulin (HI) and 2 analogs (X2, B-Asp(9), B-Glu(27) and H2, A-His(8),B-His(4),B-Glu(10), B-His(27)) on glucose uptake and protein synthesis in rat soleus muscle in situ. Glucose uptake, estimated by intramuscular (IM) injection of 2-deoxy[1,2-3H]glucose with or without insulin, was maximally increased at 10(-6) mol/L for HI and X2 and 10(-7) mol/L for H2. HI had a larger effect (318%) than either X2 (156%) or H2 (124%). The half-maximal effect (ED(50)) values for HI, X2, and H2 were 3.3 x10(-8) mol/L, 1.7 x 10(-7) mol/L, and 1.6 x 10(-9) mol/L, respectively. Protein synthesis, estimated by protein incorporation of [(3)H]phenylalanine injected into muscles with or without insulin, was maximally increased at 10(-5) mol/L for HI and 10(-6) for X2 and H2. HI had a larger effect in stimulating protein synthesis (34%) than either X2 (25%) or H2 (19.8%). The ED(50) values for HI, X2, and H2 were 3.0 x 10(-7) mol/L, 3.2 x 10(-7) mol/L, and 1.0 x 10(-9) mol/L, respectively. The biological potency of each analog (ED(50)insulin/ED(50)analog) showed X2 to be less potent than HI for both glucose uptake (0.2) and protein synthesis (0.9), whereas H2 is more potent than HI with ratios of 20 and 300, respectively. These data suggest that this approach for studying insulin responsiveness in a single muscle in situ may be a useful tool for investigating insulin signaling in muscle in vivo. Copyright 2002, Elsevier Science (USA). All rights reserved.

  1. Hyperthermia increases interleukin-6 in mouse skeletal muscle

    PubMed Central

    Welc, Steven S.; Phillips, Neil A.; Oca-Cossio, Jose; Wallet, Shannon M.; Chen, Daniel L.

    2012-01-01

    Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5–42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a “heat stress sensor” at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6. PMID:22673618

  2. The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2011-05-01

    The purpose of this study was to determine how gait deviation in one plane (i.e. excessive subtalar inversion/eversion) can affect the dynamic function of the tibialis anterior, gastrocnemius, and soleus to accelerate the subtalar, ankle, knee and hip joints, as well as the body center of mass. Induced acceleration analysis was performed based on a subject-specific three-dimensional linkage model configured by stance phase gait data and driven by one unit of muscle force. Eight healthy adult subjects were examined in gait analysis. The subtalar inversion/eversion was modeled by offsetting up to 20° from the normal subtalar angle while other configurations remained unaltered. This study showed that the gastrocnemius, soleus and tibialis anterior generally functioned as their anatomical definition in normal gait, but counterintuitive function was occasionally found in the bi-articular gastrocnemius. The plantarflexors play important roles in the body support and forward progression. Excessive subtalar eversion was found to enlarge the plantarflexors and tibialis anterior's function. Induced acceleration analysis demonstrated its ability to isolate the contributions of individual muscle to a given factor, and as a means of studying effect of pathological gait on the dynamic muscle functions. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Measurement of nucleotide exchange rate constants in single rabbit soleus myofibrils during shortening and lengthening using a fluorescent ATP analog.

    PubMed Central

    Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H

    2000-01-01

    The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804

  4. Possible antigravity regions in F(R) theory?

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D.; Sáez-Gómez, Diego

    2014-03-01

    We construct an F(R) gravity theory corresponding to the Weyl invariant two scalar field theory. We investigate whether such F(R) gravity can have the antigravity regions where the Weyl curvature invariant does not diverge at the Big Bang and Big Crunch singularities. It is revealed that the divergence cannot be evaded completely but can be much milder than that in the original Weyl invariant two scalar field theory.

  5. Sarcolipin overexpression improves muscle energetics and reduces fatigue

    PubMed Central

    Sopariwala, Danesh H.; Pant, Meghna; Shaikh, Sana A.; Goonasekera, Sanjeewa A.; Molkentin, Jeffery D.; Weisleder, Noah; Ma, Jianjie; Pan, Zui

    2015-01-01

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (SlnOE) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that SlnOE mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that SlnOE EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and SlnOE EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in SlnOE EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from SlnOE mice fatigued significantly less than WT muscles. Interestingly, SlnOE muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in SlnOE EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of SlnOE compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  6. Measuring anisotropic muscle stiffness properties using elastography.

    PubMed

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.

  7. High-fat diet induces skeletal muscle oxidative stress in a fiber type-dependent manner in rats.

    PubMed

    Pinho, Ricardo A; Sepa-Kishi, Diane M; Bikopoulos, George; Wu, Michelle V; Uthayakumar, Abinas; Mohasses, Arta; Hughes, Meghan C; Perry, Christopher G R; Ceddia, Rolando B

    2017-09-01

    This study investigated the effects of high-fat (HF) diet on parameters of oxidative stress among muscles with distinct fiber type composition and oxidative capacities. To accomplish that, male Wistar rats were fed either a low-fat standard chow (SC) or a HF diet for 8 weeks. Soleus, extensor digitorum longus (EDL), and epitrochlearis muscles were collected and mitochondrial H 2 O 2 (mtH 2 O 2 ) emission, palmitate oxidation, and gene expression and antioxidant system were measured. Chronic HF feeding enhanced fat oxidation in oxidative and glycolytic muscles. It also caused a significant reduction in mtH 2 O 2 emission in the EDL muscle, although a tendency towards a reduction was also found in the soleus and epitrochlearis muscles. In the epitrochlearis, HF diet increased mRNA expression of the NADPH oxidase complex; however, this muscle also showed an increase in the expression of antioxidant proteins, suggesting a higher capacity to generate and buffer ROS. The soleus muscle, despite being highly oxidative, elicited H 2 O 2 emission rates equivalent to only 20% and 35% of the values obtained for EDL and epitrochlearis muscles, respectively. Furthermore, the Epi muscle with the lowest oxidative capacity was the second highest in H 2 O 2 emission. In conclusion, it appears that intrinsic differences related to the distribution of type I and type II fibers, rather than oxidative capacity, drove the activity of the anti- and pro-oxidant systems and determine ROS production in different skeletal muscles. This also suggests that the impact of potentially deleterious effects of ROS production on skeletal muscle metabolism/function under lipotoxic conditions is fiber type-specific. Copyright © 2017. Published by Elsevier Inc.

  8. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.

    PubMed

    Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M

    2016-09-01

    Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Constant Fiber Number During Skeletal Muscle Atrophy and Modified Arachidonate Metabolism During Hypertrophy

    NASA Technical Reports Server (NTRS)

    Templeton, G.

    1985-01-01

    A previously documented shift from Type I to IIA predominance of the soleus muscle during rat suspension was further investigated to determine if this shift was by selective reduction of a single fiber type, simultaneous reduction and formation of fibers with different fiber types, or a transformation of fiber type by individual fibers. By partial acid digestion and dissection, average total soleus fiber number was found to be 3022 + or - 80 (SE) and 3008 + or - 64 before and after four-week suspension (n=12). Another area of current research was based on previous studies which indicate that prostaglandins are biosynthesized by skeletal muscle and evoke protein synthesis and degradation.

  10. Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α.

    PubMed

    Bahreinipour, Mohammad-Ali; Joukar, Siyavash; Hovanloo, Fariborz; Najafipour, Hamid; Naderi, Vida; Rajiamirhasani, Alireza; Esmaeili-Mahani, Saeed

    2018-06-01

    Existing evidence emphasize the role of mitochondrial dysfunction in sarcopenia which is revealed as loss of skeletal muscle mass and neuromuscular junction remodeling. We assessed the effect of low-intensity aerobic training along with blood flow restriction on muscle hypertrophy index, muscle-specific kinase (MuSK), a pivotal protein of the neuromuscular junction and Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) in aged male rats. Animals groups were control (CTL), sham (Sh), leg blood flow restriction (BFR), exercise (Ex), sham + exercise (Sh + Ex), and BFR plus exercise (BFR + Ex) groups. The exercise groups were trained with low intensity exercise for 10 weeks. 48 h after the last training session, animals were sacrificed under anesthesia. Soleus and EDL muscles were isolated, hypertrophy index was estimated and MuSK and PGC-1α were measured by western blot method. Hypertrophy index enhanced in soleus and Extensor digitorum longus (EDL) muscles of BFR + Ex group (P < 0.01 versus CTL and Sh groups, and P < 0.001 versus other groups). The MuSK protein of soleus and EDL muscles increased in BFR + Ex group (P < 0.01 and P < 0.001, respectively) in comparison with CTL and Sh groups. In BFR + Ex group, the PGC-1α protein increased in both soleus and EDL (P < 0.001 compared to other groups). Also the PGC-1α of soleus muscle was higher in Ex and Sh + Ex groups versus CTL and Sh groups (P < 0.05). Findings suggest that low endurance exercise plus BFR improves the MuSK and hypertrophy index of both slow and fast muscles of elderly rats probably through the rise of PGC-1α expression. Copyright © 2018. Published by Elsevier Inc.

  11. Muscle force compensation among synergistic muscles after fatigue of a single muscle.

    PubMed

    Stutzig, Norman; Siebert, Tobias

    2015-08-01

    The aim of this study was to examine control strategies among synergistic muscles after fatigue of a single muscle. It was hypothesized that the compensating mechanism is specific for each fatigued muscle. The soleus (SOL), gastrocnemius lateralis (GL) and medialis (GM) were fatigued in separate sessions on different days. In each experiment, subjects (n = 11) performed maximal voluntary contractions prior to and after fatiguing a single muscle (SOL, GL or GM) while the voluntary muscle activity and torque were measured. Additionally, the maximal single twitch torque of the plantarflexors and the maximal spinal reflex activity (H-reflex) of the SOL, GL and GM were determined. Fatigue was evoked using neuromuscular stimulation. Following fatigue the single twitch torque decreased by -20.1%, -19.5%, and -23.0% when the SOL, GL, or GM, have been fatigued. The maximal voluntary torque did not decrease in any session but the synergistic voluntary muscle activity increased significantly. Moreover, we found no alterations in spinal reflex activity. It is concluded that synergistic muscles compensate each other. Furthermore, it seems that self-compensating mechanism of the fatigued muscles occurred additionally. The force compensation does not depend on the function of the fatigued muscle. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Differential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading

    PubMed Central

    Yu, Zhi-Bin; Gao, Fang; Feng, Han-Zhong; Jin, J-P

    2006-01-01

    Weight-bearing skeletal muscles change phenotype rapidly in response to unloading. Using the hind limb-suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hind limb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus (EDL) muscle. The unloaded soleus muscle also had decreased fatigue resistance. Together with the decrease of myosin heavy chain (MHC) isoform I and IIa and increase of MHC IIb and IIx, coordinated regulation of thin filament regulatory protein isoforms were observed: γ- and β-tropomyosin decreased and α-tropomyosin increased, resulting in an α/β ratio similar to that in normal fast twitch skeletal muscle; troponin I and troponin T (TnT) both showed decrease in the slow isoform and increases in the fast isoform. The TnT isoform switching began after 7 days of unloading and TnI isoform showed detectable changes at 14 days while other protein isoform changes were not significant until 28 days of treatment. Correlating to the early changes in contractility, especially the resistance to fatigue, the early response of TnT isoform regulation may play a unique role in the adaptation of skeletal muscle to unloading. When the fast TnT gene expression was up-regulated in the unloaded soleus muscle, alternative RNA splicing switched to produce more high molecular weight acidic isoforms, reflecting a potential compensation for the decrease of slow TnT that is critical to skeletal muscle function. The results demonstrate that differential regulation of TnT isoforms is a sensitive mechanism in muscle adaptation to functional demands. PMID:17108008

  13. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    PubMed

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  14. Improved fatigue resistance in Gsα-deficient and aging mouse skeletal muscles due to adaptive increases in slow fibers

    PubMed Central

    Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.

    2011-01-01

    Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879

  15. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  16. Anti-gravity and galaxy rotation curves

    NASA Astrophysics Data System (ADS)

    Sanders, R. H.

    1984-07-01

    A modification of Newtonian gravitational attraction which arises in the context of modern attempts to unify gravity with the other forces in nature can produce rotation curves for spiral galaxies which are nearly flat from 10 to 100 kpc, bind clusters of galaxies, and close the universe with the density of baryonic matter consistent with primordial nucleosynthesis. This is possible if a very low mass vector boson carries an effective anti-gravity force which on scales smaller than that of galaxies almost balances the normal attractive gravity force.

  17. Role of muscle spindle in weightlessness-induced amyotrophia and muscle pain.

    PubMed

    Ali, Umar; Fan, Xiao-Li; You, Hao-Jun

    2009-10-01

    To date, the medium and long-term space flight is urgent in need and has become a major task of our manned space flight program. There is no doubt that medium and long-term space flight has serious damaging impact upon human physiological systems. For instance, atrophy of the lower limb anti-gravity muscle can be induced during the space flight. Muscle atrophy significantly affects the flight of astronauts in space. Most importantly, it influences the precise manipulation of the astronauts and their response capacity to emergencies on returning to the atmosphere from space. Muscle atrophy caused by weightlessness may also seriously disrupt the normal life and work of the astronauts during the re-adaptation period. Here we summarize the corresponding research concentrating on weightlessness-induced changes of muscular structure and function. By combining research on muscle pain, which is a common clinical pain disease, we further provide a hypothesis concerning a dynamic feedback model of "weightlessness condition right triple arrow muscular atrophy <--> muscle pain". This may be useful to explore the neural mechanisms underlying the occurrence and development of muscular atrophy and muscle pain, through the key study of muscle spindle, and furthermore provide more effective therapy for clinical treatment.

  18. Lumbo-pelvic joint protection against antigravity forces: motor control and segmental stiffness assessed with magnetic resonance imaging.

    PubMed

    Richardson, C A; Hides, J A; Wilson, S; Stanton, W; Snijders, C J

    2004-07-01

    The antigravity muscles of the lumbo-pelvic region, especially transversus abdominis (TrA), are important for the protection and support of the weightbearing joints. Measures of TrA function (the response to the postural cue of drawing in the abdominal wall) have been developed and quantified using magnetic resonance imaging (MRI). Cross-sections through the trunk allowed muscle contraction as well as the large fascial attachments of the TrA to be visualized. The cross sectional area (CSA) of the deep musculo-fascial system was measured at rest and in the contracted state, using static images as well as a cine sequence. In this developmental study, MRI measures were undertaken on a small sample of low back pain (LBP) and non LBP subjects. Results demonstrated that, in non LBP subjects, the draw in action produced a symmetrical deep musculo-fascial "corset" which encircles the abdomen. This study demonstrated a difference in this "corset" measure between subjects with and without LBP. These measures may also prove useful to quantify the effect of unloading in bedrest and microgravity exposure.

  19. Pilot Fullerton dons EES anti-gravity suit lower torso on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton dons ejection escape suit (EES) anti-gravity (anti-g) suit lower torso on forward port side middeck above potable water tank. Anti-g suit is an olive drab inner garment that complements EES.

  20. Effects of hindlimb unloading on neuromuscular development of neonatal rats

    NASA Technical Reports Server (NTRS)

    Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.

    2000-01-01

    We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.

  1. Muscle atrophy associated with microgravity in rat: Basic data for countermeasures

    NASA Astrophysics Data System (ADS)

    Falempin, M.; Mounier, Y.

    Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.

  2. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit.

    PubMed Central

    Lamb, G D; Walsh, T

    1987-01-01

    1. The Vaseline-gap technique was used to record slow calcium currents and asymmetric charge movement in single fibres of fast-twitch muscles (extensor digitorum longus (e.d.l.) and sternomastoid) and slow-twitch muscles (soleus) from rat and rabbit, at a holding potential of -90 mV. 2. The slow calcium current in soleus fibres was about one-third of the size of the current in e.d.l. fibres, but was very similar otherwise. In both e.d.l. and soleus fibres, the dihydropyridine (DHP), nifedipine, suppressed the calcium current entirely. 3. In these normally polarized fibres, nifedipine suppressed only part (qns) of the asymmetric charge movement. The proportion of qns suppressed by various concentrations of nifedipine was linearly related to the associated reduction of the calcium current. Half-maximal suppression of both parameters was obtained with about 0.5 microM-nifedipine. The calcium current and the qns component of the charge movement also were suppressed over the same time course by nifedipine. Another DHP calcium antagonist, (+)PN200/110, was indistinguishable from nifedipine in its effects of suppressing calcium currents and qns. 4. In all muscle types, the total amount of qns in each fibre was linearly related to the size of the calcium current (in the absence of DHP). On average, qns was 3.3 times larger in e.d.l. fibres than in soleus fibres. 5. In contrast to the other dihydropyridines, (-)bay K8644, a calcium channel agonist, did not suppress any asymmetric charge movement. 6. The potential dependence of the slow calcium current implied a minimum gating charge of about five or six electronic charges. The movement of qns occurred over a more negative potential range than the change in calcium conductance. 7. Experiments on the binding of (+)PN200/110 indicated that e.d.l. muscles had between about 2 and 3 times more specific DHP binding sites than did soleus muscle. 8. These results point to a close relationship between slow calcium channels, the qns

  3. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  4. Diffusion tensor imaging in evaluation of human skeletal muscle injury.

    PubMed

    Zaraiskaya, Tatiana; Kumbhare, Dinesh; Noseworthy, Michael D

    2006-08-01

    To explore the capability and reliability of diffusion tensor magnetic resonance imaging (DTI) in the evaluation of human skeletal muscle injury. DTI of four patients with gastrocnemius and soleus muscles injuries was compared to eight healthy controls. Imaging was performed using a GE 3.0T short-bore scanner. A diffusion-weighted 2D spin echo echo-planar imaging (EPI) pulse sequence optimized for skeletal muscle was used. From a series of axially acquired diffusion tensor images the diffusion tensor eigenparameters (eigenvalues and eigenvectors), fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were calculated and compared for injured and healthy calf muscles. Two dimensional (2D) projection maps of the principal eigenvectors were plotted to visualize the healthy and pathologic muscle fiber architectures. Clear differences in FA and ADC were observed in injured skeletal muscle, compared to healthy controls. Mean control FA was 0.23 +/- 0.02 for medial and lateral gastrocnemius (mg and lg) muscles, and 0.20 +/- 0.02 for soleus (sol) muscles. In all patients FA values were reduced compared to controls, to as low as 0.08 +/- 0.02. The ADC in controls ranged from 1.41 to 1.31 x 10(-9) m(2)/second, while in patients this was consistently higher. The 2D projection maps revealed muscle fiber disorder in injured calves, while in healthy controls the 2D projection maps show a well organized (ordered) fiber structure. DTI is a suitable method to assess human calf muscle injury.

  5. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  6. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions

    PubMed Central

    Bruton, Joseph; Tavi, Pasi; Aydin, Jan; Westerblad, Håkan; Lännergren, Jan

    2003-01-01

    Previous studies on single fast-twitch fibres from mouse toe muscles have shown marked fatigue-induced changes in the free myoplasmic [Ca2+] ([Ca2+]i), while mitochondrial [Ca2+] remained unchanged. We have now investigated whether muscle fibres from the legs of mice respond in a similar way. Intact, single fibres were dissected from the soleus and extensor digitorum longus (EDL) muscles of adult mice. To measure [Ca2+]i, indo-1 was injected into the isolated fibres. Mitochondrial [Ca2+] was measured using Rhod-2 and confocal laser microscopy. Fatigue was induced by up to 1000 tetanic contractions (70 Hz) given at 2 s intervals. In soleus fibres, there was no significant decrease in tetanic [Ca2+]i at the end of the fatiguing stimulation, whereas tetanic force was significantly reduced by about 30 %. In 10 out of 14 soleus fibres loaded with Rhod-2 and subjected to fatigue, mitochondrial [Ca2+] increased to a maximum after about 50 tetani; this increase was fully reversed within 20 min after the end of stimulation. The force-frequency curve of the non-responding soleus fibres was shifted to higher frequencies compared to that of the responding fibres. In addition, eight out of nine Rhod-2-loaded EDL fibres showed similar changes in mitochondrial [Ca2+] during and after a period of fatiguing stimulation. The stimulation-induced increase in mitochondrial [Ca2+] was reduced when mitochondria were depolarised by application of carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone, whereas it was increased by application of an inhibitor of the mitochondrial Na+/Ca2+ exchange (CGP-37157). In conclusion, isolated slow-twitch muscle fibres show only modest changes in tetanic force and [Ca2+]i during repeated contractions. The increase in mitochondrial Ca2+ does not appear to be essential for activation of mitochondrial ATP production, nor does it cause muscle damage. PMID:12815178

  7. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis

  8. Life-Long Wheel Running Attenuates Age-Related Fiber Loss in the Plantaris Muscle of Mice: a Pilot Study.

    PubMed

    Suwa, M; Ishioka, T; Kato, J; Komaita, J; Imoto, T; Kida, A; Yokochi, T

    2016-06-01

    The purpose of this study was to investigate whether long-term wheel running would attenuate age-related loss of muscle fiber. Male ICR mice were divided into young (Y, n=12, aged 3 months), old-sedentary (OS, n=5, aged 24 months), and old-exercise (OE, n=6, aged 24 months) groups. The OE group started spontaneous wheel running at 3 months and continued until 24 months of age. Soleus and plantaris muscles were fixed in 4% paraformaldehyde buffer. The fixed muscle was digested in a 50% NaOH solution to isolate single fiber and then fiber number was quantified. The masses of the soleus and plantaris muscles were significantly lower at 24 months than at 3 months of age, and this age-related difference was attenuated by wheel running (P<0.05). Soleus muscle fiber number did not differ among the groups. In the plantaris muscle, the fiber number in the OS group (1 288±92 fibers) was significantly lower than in the Y group (1 874±93 fibers), and this decrease was attenuated in the OE group (1 591±80 fibers) (P<0.05). These results suggest that age-related fiber loss occurs only in the fast-twitch fiber-rich muscle of mice, and that life-long wheel running exercise can prevent this fiber loss. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  10. PGC-1α is important for maintaining the balance of muscle mass and myofiber types in unloaded muscle atrophy

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong

    2016-07-01

    PGC-1α, a transcriptional co-activator, has been shown mainly to determine the development of oxidative myofibers in skeletal muscle. However, whether PGC-1α functions to regulate the unloaded muscle atrophy and composition of myofiber types keeps unclear. MCK-PGC-1α overexpression transgenic mice (TG) and its wild type littermates (WT) were subjected to hindlimb unloading (HU) and induced unloaded muscle atrophy. After 14 days of HU, the mass of gastrocnemius, soleus, and plantaris muscles in WT mice decreased 17.9%, 28.2%, and 14.8%, respectively (P<0.01), compared with ground weight-bearing control muscles. PGC-1α transgenic mice showed a 14.0% (P<0.05), 20.4% (P<0.01), 11.8% decrease in gastrocnemius, soleus, and plantaris muscles mass after HU. To further confirm the effect of PGC-1α over-expression on the muscle mass loss under HU, change rate of muscle-body weight ratio was calculated, and the results indicated that the reduction of change rate of muscle-body weight ratio in PGC-1α transgenic gastrocnemius and soleus was significantly less than in WT mice (P<0.01). Moreover, in TG mice compared to WT mice there were significantly less reduction rate of slow-twitch myofiber MHC-I and MHC-IIa (MHC-I, -3.0±0.2% vs -14.9±4.2%, p<0.01, MHC-IIa, -3.5±2.7% vs -6.2±3.7%, p<0.01 ), while there was significantly less induction rate of fast-twitch myofiber MHC-IIb (MHC-IIb, +0.6±0.6% vs +3.7±2.9%, p<0.01 ). The real-time PCR and Western blot analysis confirmed that PGC-1α overexpression mice markedly rescued the muscle atrophy and myofiber switching from oxidative to glycolytic associated with a decrease in pSmad3 level after 14 days of HU. Importantly, overexpression of PGC-1α in C2C12 myoblasts protected PGC-1α-transfected myotubes from atrophy in vitro and the effect could be partially blocked by inducing pSmad3 with constitutively activated Smad3(C.A. smad3) transfection. Therefore, this study demonstrated a novel role and mechanism for PGC-1α in

  11. Cardiovascular, renal, electrolyte, and hormonal changes in man during gravitational stress, weightlessness, and simulated weightlessness: Lower body positive pressure applied by the antigravity suit. Thesis - Oslo Univ.

    NASA Technical Reports Server (NTRS)

    Kravik, Stein E.

    1989-01-01

    Because of their erect posture, humans are more vulnerable to gravitational changes than any other animal. During standing or walking man must constantly use his antigravity muscles and his two columns, his legs, to balance against the force of gravity. At the same time, blood is surging downward to the dependent portions of the body, draining blood away from the brain and heart, and requiring a series of complex cardiovascular adjustments to maintain the human in a bipedal position. It was not until 12 April 1961, when Yuri Gagarin became the first human being to orbit Earth, that we could confirm man's ability to maintain vital functions in space -- at least for 90 min. Nevertheless, man's adaptation to weightlessness entails the deconditioning of various organs in the body. Muscles atrophy, and calcium loss leads to loss of bone strength as the demands on the musculoskeletal system are almost nonexistent in weightlessness. Because of the lack of hydrostatic pressures in space, blood rushes to the upper portions of the body, initiating a complex series of cardioregulatory responses. Deconditioning during spaceflight, however, first becomes a potentially serious problem in humans returning to Earth, when the cardiovascular system, muscles and bones are suddenly exposed to the demanding counterforce of gravity -- weight. One of the main purposes of our studies was to test the feasibility of using Lower Body Positive Pressure, applied with an antigravity suit, as a new and alternative technique to bed rest and water immersion for studying cardioregulatory, renal, electrolyte, and hormonal changes in humans. The results suggest that Lower Body Positive Pressure can be used as an analog of microgravity-induced physiological responses in humans.

  12. Myosin heavy chain expression in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Haddad, F.; Herrick, R. E.; Adams, G. R.; Baldwin, K. M.

    1993-01-01

    This study ascertained the effects of 9 days of zero gravity on the relative (percentage of total) and calculated absolute (mg/muscle) content of isomyosin expressed in both antigravity and locomotor skeletal muscle of ground control (CON) and flight-exposed (FL) rats. Results showed that although there were no differences in body weight between FL and CON animals, a significant reduction in muscle mass occurred in the vastus intermedius (VI) (P < 0.05) but not in the vastus lateralis (VL) or the tibialis anterior. Both total muscle protein and myofibril protein content were not different between the muscle regions examined in the FL and CON groups. In the VI, there were trends for reductions in the relative content of type I and IIa myosin heavy chains (MHCs) that were offset by increases in the relative content of both type IIb and possibly type IIx MHC protein (P > 0.05). mRNA levels were consistent with this pattern (P < 0.05). The same pattern held true for the red region of the VL as examined at both the protein and mRNA level (P < 0.05). When the atrophy process was examined, there were net reductions in the absolute content of both type I and IIa MHCs that were offset by calculated increases in type IIb MHC in both VI and red VL. Collectively, these findings suggest that there are both absolute and relative changes occurring in MHC expression in the "red" regions of antigravity skeletal muscle during exposure to zero gravity that could affect muscle function.

  13. Corticospinal excitability of the ankle extensor muscles is enhanced in ballet dancers.

    PubMed

    Saito, Sakiko; Obata, Hiroki; Endoh, Takashi; Kuno-Mizumura, Mayumi; Nakazawa, Kimitaka

    2014-09-01

    We tested the corticospinal excitability of the soleus muscle in ballet dancers to clarify whether the presumed long-term repetition of the specific plantarflexion results in changes of excitability in this neural pathway. We compared motor evoked potentials of the soleus muscle at rest and during isometric contraction of the plantar flexors in dancers and non-dancers. The amplitudes of motor evoked potentials elicited by transcranial magnetic stimulation during contraction were examined against the background electromyographic activity. A regression line was calculated for each subject. Results showed that the slope of the regression line is significantly greater in the dancer group than in the control group, suggesting that the corticospinal tract of ballet dancers has adapted to long-term repetition of plantarflexion in daily ballet training.

  14. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    PubMed

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  15. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    PubMed

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  16. Effects of Unloading and Reloading on Expressions of Skelatal Muscle Membrane Proteins in Mice

    NASA Astrophysics Data System (ADS)

    Ohno, Y.; Ikuta, A.; Goto, A.; Sugiura, T.; Ohira, Y.; Yoshioka, T.; Goto, K.

    2013-02-01

    Effects of unloading and reloading on the expression levels of tripartite motif-containing 72 (TRIM72) and caveolin-3 (Cav-3) of soleus muscle in mice were investigated. Male C57BL/6J mice (11-week old) were randomly assigned to control and hindlimb-suspended groups. Some of mice in hindlimb-suspended group were subjected to continuous hindlimb suspension (HS) for 2 weeks with or without 7 days of ambulation recovery. Following HS, the muscle weight and protein expression levels of TRIM72 and Cav-3 in soleus were decreased. On the other hand, the gradual increases in muscle mass, TRIM72 and Cav-3 were observed after reloading following HS. Therefore, it was suggested that mechanical loading played a key role in a regulatory system for protein expressions of TRIM72 and Cav-3.

  17. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    PubMed

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  18. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  19. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  20. Immobilization/remobilization and the regulation of muscle mass

    NASA Technical Reports Server (NTRS)

    Almon, R. R.

    1983-01-01

    The relationship between animal body weight and the wet and dry weights of the soleus and EDL muscles was derived. Procedures were examined for tissue homogenization, fractionation, protein determination and DNA determination. A sequence of procedures and buffers were developed to carry out all analyses on one small muscle. This would yield a considerable increase in analytical strength associated with paired statistics. The proposed casting procedure which was to be used for immobilization was reexamined.

  1. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  2. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    PubMed

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  3. Alterations in skeletal muscle related to impaired physical mobility: an empirical model

    NASA Technical Reports Server (NTRS)

    Kasper, C. E.; McNulty, A. L.; Otto, A. J.; Thomas, D. P.

    1993-01-01

    The objective of this investigation was to study impaired physical mobility and the resulting skeletal muscle atrophy. An animal model was used to study morphological adaptations of the soleus and plantaris muscles to decreased loading induced by hindlimb suspension of an adult rat for 7, 14, and 28 consecutive days. Alterations in weight, skeletal muscle growth, and changes in fiber type composition were studied in synergistic plantar flexors of the rat hindlimb. Body weight and the soleus muscle mass to body mass ratio demonstrated significant progressive atrophy over th 28-day experimental period with the most significant changes occurring in the first 7 days of hindlimb suspension. Hindlimb suspension produced atrophy of Type I and Type IIa muscle fibers as demonstrated by significant decreases in fiber cross-sectional area (micron 2). These latter changes account for the loss of contractile force production reported in the rat following hindlimb unloading. When compared to traditional models of hindlimb suspension and immobilization, the ISC model produces a less severe atrophy while maintaining animal mobility and health. We conclude that it is the preferred animal model to address nursing questions of impaired physical mobility.

  4. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    PubMed

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  5. A constraint on antigravity of antimatter from precision spectroscopy of simple atoms

    NASA Astrophysics Data System (ADS)

    Karshenboim, S. G.

    2009-10-01

    Consideration of antigravity for antiparticles is an attractive target for various experimental projects. There are a number of theoretical arguments against it but it is not quite clear what kind of experimental data and theoretical suggestions are involved. In this paper we present straightforward arguments against a possibility of antigravity based on a few simple theoretical suggestions and some experimental data. The data are: astrophysical data on rotation of the Solar System in respect to the center of our galaxy and precision spectroscopy data on hydrogen and positronium. The theoretical suggestions for the case of absence of the gravitational field are: equality of electron and positron mass and equality of proton and positron charge. We also assume that QED is correct at the level of accuracy where it is clearly confirmed experimentally.

  6. Mathematical models of human paralyzed muscle after long-term training.

    PubMed

    Law, L A Frey; Shields, R K

    2007-01-01

    Spinal cord injury (SCI) results in major musculoskeletal adaptations, including muscle atrophy, faster contractile properties, increased fatigability, and bone loss. The use of functional electrical stimulation (FES) provides a method to prevent paralyzed muscle adaptations in order to sustain force-generating capacity. Mathematical muscle models may be able to predict optimal activation strategies during FES, however muscle properties further adapt with long-term training. The purpose of this study was to compare the accuracy of three muscle models, one linear and two nonlinear, for predicting paralyzed soleus muscle force after exposure to long-term FES training. Further, we contrasted the findings between the trained and untrained limbs. The three models' parameters were best fit to a single force train in the trained soleus muscle (N=4). Nine additional force trains (test trains) were predicted for each subject using the developed models. Model errors between predicted and experimental force trains were determined, including specific muscle force properties. The mean overall error was greatest for the linear model (15.8%) and least for the nonlinear Hill Huxley type model (7.8%). No significant error differences were observed between the trained versus untrained limbs, although model parameter values were significantly altered with training. This study confirmed that nonlinear models most accurately predict both trained and untrained paralyzed muscle force properties. Moreover, the optimized model parameter values were responsive to the relative physiological state of the paralyzed muscle (trained versus untrained). These findings are relevant for the design and control of neuro-prosthetic devices for those with SCI.

  7. Modulation of soleus corticospinal excitability during Achilles tendon vibration.

    PubMed

    Lapole, Thomas; Temesi, John; Arnal, Pierrick J; Gimenez, Philippe; Petitjean, Michel; Millet, Guillaume Y

    2015-09-01

    Soleus (SOL) corticospinal excitability has been reported to increase during Achilles tendon vibration. The aim of the present study was to further investigate SOL corticospinal excitability and elucidate the changes to intracortical mechanisms during Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the SOL by transcranial magnetic stimulation (TMS) of the corresponding motor cortical area of the leg with and without 50-Hz Achilles tendon vibration. SOL input-output curves were determined. Paired-pulse protocols were also performed to investigate short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) by conditioning test TMS pulses with sub-threshold TMS pulses at inter-stimulus intervals of 3 and 13 ms, respectively. During Achilles tendon vibration, motor threshold was lower than in the control condition (43 ± 13 vs. 49 ± 11 % of maximal stimulator output; p = 0.008). Input-output curves were also influenced by vibration, i.e. there was increased maximal MEP amplitude (0.694 ± 0.347 vs. 0.268 ± 0.167 mV; p < 0.001), decreased TMS intensity to elicit a MEP of half the maximal MEP amplitude (100 ± 13 vs. 109 ± 9 % motor threshold; p = 0.009) and a strong tendency for decreased slope constant (0.076 ± 0.04 vs. 0.117 ± 0.04; p = 0.068). Vibration reduced ICF (98 ± 61 vs. 170 ± 105 % of test MEP amplitude; p = 0.05), but had no effect on SICI (53 ± 26 vs. 48 ± 22 % of test MEP amplitude; p = 0.68). The present results further document the increased vibration-induced corticospinal excitability in the soleus muscle and suggest that this increase is not mediated by changes in SICI or ICF.

  8. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol.

    PubMed

    Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2002-12-01

    Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.

  9. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  10. Chronic exertional compartment syndrome of the superficial posterior compartment: Soleus syndrome.

    PubMed

    Gross, Christopher E; Parekh, Bela J; Adams, Samuel B; Parekh, Selene G

    2015-01-01

    Chronic exertional compartment syndrome (CECS) represents the second most-common cause of exertional leg pain with incidence of 27-33%. CECS of the superficial posterior compartment, or soleus syndrome, is rare and has only been discussed briefly in the literature. We discuss the management of two patients with bilateral soleus syndrome or CECS of the superficial posterior compartment.

  11. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  12. Influence of intramuscular fiber orientation on the Achilles tendon curvature using three-dimensional finite element modeling of contracting skeletal muscle.

    PubMed

    Kinugasa, Ryuta; Yamamura, Naoto; Sinha, Shantanu; Takagi, Shu

    2016-10-03

    Tendon curvature plays a key role in mechanical gain (amplifying the joint excursion relative to fiber length change) during joint motion, but the mechanism remains unresolved. A three-dimensional finite element (FE) model was used to investigate the influence of intramuscular fiber orientation upon the curvature pattern of the Achilles tendon during active muscular contraction. Two simulation models, with fiber pennation angles of θ = 25° and 47° were tested for the gastrocnemius and soleus muscles. A smaller pennation angle (25°) of the soleus muscle fibers was accompanied by a large change in curvature whereas a larger pennation angle (47°) of the soleus muscle was accompanied by small effects. These results suggest that the fiber pennation angle determines the curvature of the tendon, and the magnitude of the curvature varies along the length of the aponeurosis. Such FE modeling has the potential of determining changes in force output consequent to changes in intramuscular fiber orientation arising from resistance training or unloading, and provides mechanism for predicting the risk of Achilles tendon ruptures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Development of Human Muscle Protein Measurement with MRI

    NASA Technical Reports Server (NTRS)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  14. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  15. Modulation of visceral fat adipokine secretion by dietary fatty acids and ensuing changes in skeletal muscle inflammation.

    PubMed

    Tishinsky, Justine M; De Boer, Anna A; Dyck, David J; Robinson, Lindsay E

    2014-01-01

    Given the link between obesity and insulin resistance, the role of adipose-derived factors in communicating with skeletal muscle to affect its function is important. We sought to determine if high fat diets modulate visceral adipose tissue (VAT) adipokines with subsequent effects on skeletal muscle inflammation and insulin sensitivity. Rats were fed (i) low fat (LF), (ii) high saturated fatty acid (SFA), or (iii) high SFA with n-3 polyunsaturated fatty acid (SFA/n-3 PUFA) diets for 4 weeks. VAT-derived adipokines were measured in adipose conditioned medium (ACM) after 72 h. Next, skeletal muscles from LF-fed rats were incubated for 8 h in (i) control buffer (CON), (ii) CON with 2 mmol·L(-1) palmitate (PALM, positive control), (iii) ACM from LF, (iv) ACM from SFA, or (v) ACM from SFA/n-3 PUFA. ACM from rats fed SFA and SFA/n-3 PUFA had increased (P ≤ 0.05) interleukin-6 (IL-6) (+31%) and monocyte chemoattractant protein-1 (MCP-1) (+30%). Adiponectin was decreased (-29%, P ≤ 0.05) in ACM from SFA, and this was prevented in SFA/n-3 PUFA ACM. Toll-like receptor 4 (TLR4) gene expression was increased (P ≤ 0.05) in PALM soleus muscle (+356%) and all ACM groups (+175%-191%). MCP-1 gene expression was elevated (P ≤ 0.05) in PALM soleus muscle (+163%) and soleus muscle incubated in ACM from animals fed SFA (+159%) and SFA/n-3 PUFA (+151%). Glucose transport was impaired (P ≤ 0.05) in PALM muscles but preserved in ACM groups. Acute exposure of muscle to fatty acid modulated adipokines affects skeletal muscle inflammatory gene expression but not insulin sensitivity.

  16. Muscle fibre recruitment can respond to the mechanics of the muscle contraction.

    PubMed

    Wakeling, James M; Uehli, Katrin; Rozitis, Antra I

    2006-08-22

    This study investigates the motor unit recruitment patterns between and within muscles of the triceps surae during cycling on a stationary ergometer at a range of pedal speeds and resistances. Muscle activity was measured from the soleus (SOL), medial gastrocnemius (MG) and lateral gastrocnemius (LG) using surface electromyography (EMG) and quantified using wavelet and principal component analysis. Muscle fascicle strain rates were quantified using ultrasonography, and the muscle-tendon unit lengths were calculated from the segmental kinematics. The EMG intensities showed that the body uses the SOL relatively more for the higher-force, lower-velocity contractions than the MG and LG. The EMG spectra showed a shift to higher frequencies at faster muscle fascicle strain rates for MG: these shifts were independent of the level of muscle activity, the locomotor load and the muscle fascicle strain. These results indicated that a selective recruitment of the faster motor units occurred within the MG muscle in response to the increasing muscle fascicle strain rates. This preferential recruitment of the faster fibres for the faster tasks indicates that in some circumstances motor unit recruitment during locomotion can match the contractile properties of the muscle fibres to the mechanical demands of the contraction.

  17. Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes

    PubMed Central

    Werneck-de-Castro, Joao P.; Fonseca, Tatiana L.; Ignacio, Daniele L.; Fernandes, Gustavo W.; Andrade-Feraud, Cristina M.; Lartey, Lattoya J.; Ribeiro, Marcelo B.; Ribeiro, Miriam O.; Gereben, Balazs

    2015-01-01

    The type 2 deiodinase (D2) activates the prohormone T4 to T3. D2 is expressed in skeletal muscle (SKM), and its global inactivation (GLOB-D2KO mice) reportedly leads to skeletal muscle hypothyroidism and impaired differentiation. Here floxed Dio2 mice were crossed with mice expressing Cre-recombinase under the myosin light chain 1f (cre-MLC) to disrupt D2 expression in the late developmental stages of skeletal myocytes (SKM-D2KO). This led to a loss of approximately 50% in D2 activity in neonatal and adult SKM-D2KO skeletal muscle and about 75% in isolated SKM-D2KO myocytes. To test the impact of Dio2 disruption, we measured soleus T3 content and found it to be normal. We also looked at the expression of T3-responsive genes in skeletal muscle, ie, myosin heavy chain I, α-actin, myosin light chain, tropomyosin, and serca 1 and 2, which was preserved in neonatal SKM-D2KO hindlimb muscles, at a time that coincides with a peak of D2 activity in control animals. In adult soleus the baseline level of D2 activity was about 6-fold lower, and in the SKM-D2KO soleus, the expression of only one of five T3-responsive genes was reduced. Despite this, adult SKM-D2KO animals performed indistinguishably from controls on a treadmill test, running for approximately 16 minutes and reached a speed of about 23 m/min; muscle strength was about 0.3 mN/m·g body weight in SKM-D2KO and control ankle muscles. In conclusion, there are multiple sources of D2 in the mouse SKM, and its role is limited in postnatal skeletal muscle fibers. PMID:26214036

  18. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    PubMed

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  19. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.

    PubMed

    Ayre, K J; Hulbert, A J

    1996-02-01

    The effects of manipulating dietary levels of essential polyunsaturated fatty acids on the function of isolated skeletal muscles in male Wistar rats were examined. Three isoenergetic diets were used: an essential fatty acid-deficient diet (EFAD), a diet high in essential (n-6) fatty acids [High (n-6)], and a diet enriched with essential (n-3) fatty acids [High (n-3)]. After 9 wk, groups of rats on each test diet were fed a stock diet of laboratory chow for a further 6 wk. Muscle function was examined by using a battery of five tests for soleus (slow twitch) and extensor digitorum longus (EDL; fast twitch). Tests included single muscle twitches, sustained tetanic contractions, posttetanic potentiation, sustained high-frequency stimulation, and intermittent low-frequency stimulation. Results for muscles from the High (n-6) and High (n-3) groups were very similar. However, the EFAD diet resulted in significantly lower muscular tensions and reduced response times compared with the High (n-6) and High (n-3) diets. Peak twitch tension in soleus muscles was 16-21% less in the EFAD group than in the High (n-6) and High (n-3) groups, respectively [analysis of variance (ANOVA), P < 0.01). During high-frequency stimulation, EDL muscles from the EFAD rats fatigued 32% more quickly (ANOVA, P < 0.01)]. Also, twitch contraction and half-relaxation times were significantly 5-7% reduced in the EFAD group (ANOVA, P < 0.01). During intermittent low-frequency stimulation, soleus muscles from the EFAD group generated 25-28% less tension than did the other groups (ANOVA, P < 0.01), but in EDL muscles from the EFAD group, endurance was 20% greater than in the High (n-6) group (ANOVA, P < 0.05). After 6 wk on the stock diet, there were no longer any differences between the dietary groups. Manipulation of dietary fatty acids results in significant, but reversible, effects in muscles of rats fed an EFAD diet.

  20. [Pathophysiology of muscular atrophy due to disuse--with special reference to a single muscle fiber and its ultrastructure].

    PubMed

    Sukegawa, T

    1983-08-01

    Immobilization muscule atrophy was experimentally induced by fixing one ankle joint with a K-wire in an extended position in rats. The animals were sacrificed at designated intervals to obtain the soleus muscle from the fixed (or disused) side and the free side; the muscles were weighed wet, evaluated (musculo) physiologically using a single-skinned muscle fiber method, and further examined histochemically and electron-microscopically. The wet weight of the disused soleus muscle was reduced to 54% of that of the healthy (used) muscle. According to classification by types of muscle fibers stained for ATPase, conversion of muscle fiber type, i.e., conversions of type 1 (red muscle) into type 2 (white muscle) was noted on the disused side, and similar findings were also observed by examination using a single skinned muscle fiber method. The maximal tension developed by the disused single muscle fiber was lower. This may be attributable to structural changes in the myofilament arrangement observed under an electron microscope. No abnormalities were found in calcium ion uptake by the sarcoplasmic reticulum. Under the present experimental conditions, it was clarified that the disuse atrophy of skeletal muscle induces not only reduction of muscle fibers in diameter but also their dedifferentiation and redifferentiation.

  1. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  2. Effects of immobilization on rat hind limb muscles under non-weight-bearing conditions

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Fagan, Julie M.; Satarug, Soisungwan; Cook, Paul H.; Tischler, Marc E.

    1988-01-01

    The effect of stretched and unstretched immobilization of a hind limb on the concentration and the metabolism of proteins in the hind-limb muscles of rats was investigated. The animals were divided into three groups: (1) weight-bearing controls, (2) tail-cast-suspended, and (3) suspended, with one hind limb immobilized with the ankle in dorsiflexion (30-40 deg angle) and the other freely moving. It was found that unloading the hind limbs for 6 days by tail cast suspension caused soleus to atrophy and reduced growth of the gastrocnemius and plantaris muscles; unloading resulted in a higher degradation rate and lower synthesis rate in both in vitro and in vivo. Chronic stretch of the unloaded soleus not only prevented its atrophy but led to significant hypertrophy, relative to weight-bearing controls, with increases in both the sarcoplasmic and myofibrillar protein fractions. Immobilizing one ankle in dorsiflexion prevented the inhibition of growth in the plantaris and gastrocnemius muscles due to unloading.

  3. The combined influence of stretch, mobility and electrical stimulation in the prevention of muscle fiber atrophy caused hypokinesia and hypodynamia

    NASA Technical Reports Server (NTRS)

    Goldspink, G.; Goldspink, D.; Loughna, P.

    1984-01-01

    The morphological and biochemical changes which occur in the hind limb muscles of the rat in response to hypokinesia and hypodynamia were investigated. Hind limb cast fixation and suspension techniques were employed to study the musclar atrophy after five days of hypokinesia and hypodynamia induced by suspension, appreciable muscular atrophy was apparent, particularly in the anti-gravity muscles. The effect of passive stretching and electrical stimulation on muscle atrophy was studied. Changes in muscle protein mass were assessed with spectrophotometric and radioactive techniques. Passive stretch is shown to counteract muscle disuse atrophy. The change in the numbers of specific muscle fibers in atrophied muscles is discussed.

  4. Diet‐induced obesity alters skeletal muscle fiber types of male but not female mice

    PubMed Central

    DeNies, Maxwell S.; Johnson, Jordan; Maliphol, Amanda B.; Bruno, Michael; Kim, Annabelle; Rizvi, Abbas; Rustici, Kevyn; Medler, Scott

    2014-01-01

    Abstract Skeletal muscles are highly plastic tissues capable dramatic remodeling in response to use, disuse, disease, and other factors. Growing evidence suggests that adipose tissues exert significant effects on the basic fiber‐type composition of skeletal muscles. In the current study, we investigated the long‐term effects of a high‐fat diet and subsequent obesity on the muscle fiber types in C57 BLK/6J mice. Litters of mice were randomly assigned to either a high‐fat diet or a control group at the time of weaning, and were maintained on this diet for approximately 1 year. Single fibers were harvested from the soleus and plantaris muscles, and fiber types were determined using SDS‐PAGE. The high‐fat diet mice were significantly heavier than the control mice (39.17 ± 2.7 g vs. 56.87 ± 3.4 g; P < 0.0003), but muscle masses were not different. In male mice, the high‐fat diet was associated with a significantly lower proportion of slow, type I fibers in the soleus muscle (40.4 ± 3.5% vs. 29.33 ± 2.6%; P < 0.0165). Moreover, the proportion of type I fibers in the soleus of male mice was inversely proportional to the relative fatness of the male mice (P < 0.003; r2 = 0.65), but no association was observed in female mice. In male mice, the decline in type I fibers was correlated with an increase in type I/IIA hybrid fibers, suggesting that the type I fibers were transformed primarily into these hybrids. The reported trends indicate that type I fibers are most susceptible to the effects of obesity, and that these fiber‐type changes can be sex specific. PMID:24744883

  5. Use of an Anti-Gravity Treadmill for Early Postoperative Rehabilitation After Total Knee Replacement: A Pilot Study to Determine Safety and Feasibility.

    PubMed

    Bugbee, William D; Pulido, Pamela A; Goldberg, Timothy; D'Lima, Darryl D

    2016-01-01

    The objective was to determine the safety, feasibility, and effects of anti-gravity gait training on functional outcomes (Knee Injury and Osteoarthritis Outcome Score [KOOS], the Timed Up and Go test [TUG], Numerical Rating Scale [NRS] for pain) with the AlterG® Anti-Gravity Treadmill® device for total knee arthroplasty (TKA) rehabilitation. Subjects (N = 30) were randomized to land-based vs anti-gravity gait training over 4 weeks of physical therapy after TKA. Adverse events, complications, and therapist satisfaction were recorded. All patients completed rehabilitation protocols without adverse events. KOOS, TUG, and NRS scores improved in both groups with no significant differences between groups. For the AlterG group, Sports/Recreation and Quality of Life subscales of the KOOS had the most improvement. At the end of physical therapy, TUG and NRS pain scores improved from 14 seconds to 8 seconds and from 2.8 to 1.1, respectively. Subjectively, therapists reported 100% satisfaction with the AlterG. This initial pilot study demonstrated that the AlterG Anti-Gravity Treadmill device was safe and feasible. While functional outcomes improved over time with use of the anti-gravity gait training, further studies are needed to define the role of this device as an alternative or adjunct to established rehabilitation protocols.

  6. Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test.

    PubMed Central

    Enoka, R M; Rankin, L L; Stuart, D G; Volz, K A

    1989-01-01

    1. An experimental protocol designed to assess fatigability in motor units (Burke, Levine, Tsairis & Zajac, 1973) has been applied to the whole muscles of anaesthetized adult rats, and the association between the electromyogram (EMG) and force was monitored over the course of the test. 2. Both test muscles (soleus and extensor digitorum longus) exhibited a wide range of fatigability, which was defined as the decline in isometric peak force at 6 min, such that the data could be separated into five levels of fatigability. Fatigue indices for each test muscle were distributed across three levels. 3. The EMG was quantified with four measures of amplitude, four of duration, and one interaction term (area). Correlation analyses indicated that the EMG was adequately represented by one measure of amplitude (absolute amplitude), one of duration (peak-to-peak duration) and area. The best single measure was area. 4. The EMG-force associations for soleus varied markedly among its three fatigability groups. In contrast, over the course of the test, all three extensor digitorum longus groups displayed qualitatively similar EMG-force associations. 5. Multiple regression analyses indicated that the EMG parameters were able to predict peak force better for extensor digitorum longus than for soleus. Furthermore, for both test muscle, the prediction was best for the most fatigable group. 6. The associations between EMG and force exhibited three patterns for the two test muscles and three levels of fatigability. These differences suggested variation in the mechanisms, related to both fibre-type composition and susceptibility to fatigue, that dictate the performance elicited by this particular stimulus regimen. The mechanisms seem to include both intracellular and transmission processes. Images Fig. 1 PMID:2778729

  7. Fiber type- and fatty acid composition-dependent effects of high-fat diets on rat muscle triacylglyceride and fatty acid transporter protein-1 content.

    PubMed

    Marotta, Mario; Ferrer-Martnez, Andreu; Parnau, Josep; Turini, Marco; Macé, Katherine; Gómez Foix, Anna M

    2004-08-01

    Intramuscular triacylglyceride (TAG) is considered an independent marker of insulin resistance in humans. Here, we examined the effect of high-fat diets, based on distinct fatty acid compositions (saturated, monounsaturated or n-6 polyunsaturated), on TAG levels and fatty acid transporter protein (FATP-1) expression in 2 rat muscles that differ in their fiber type, soleus, and gastrocnemius; the relationship to whole body glucose intolerance was also studied. Compared with carbohydrate-fed rats, the groups subjected to any one of the high-fat diets consistently exhibited enhanced body weight gain and adiposity, elevated plasma free fatty acids and TAG in the fed condition, hyperinsulinemia, and glucose intolerance. TAG content was consistently higher in soleus than in gastrocnemius, but was only significantly elevated by the n-6 polyunsaturated-based diet. FATP-1 levels in soleus were double those in gastrocnemius muscle in carbohydrate-fed animals. High-fat diets caused an elevation in FATP-1 protein content in soleus, but a reduction in gastrocnemius. In conclusion, the hyperinsulinemic hyperlipidemic condition upregulates FATP-1 expression in soleus and downregulates that of gastrocnemius. Hypercaloric saturated, monounsaturated, or n-6 polyunsaturated lipid diets cause equivalent whole body insulin resistance in rats, but only an n-6 polyunsaturated acid-based diet triggers intramuscular TAG accumulation. Copyright 2004 Elsevier Inc.

  8. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  9. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 1; Metabolic Enzymes of Individual Muscle Fibers

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Carter, J. G.; Chi, M. M.-Y.; Choksi, R.; Manchester, J. K.; McDougal, D. B.; Nemeth, P. M.; Pusateri, M. E.

    1994-01-01

    Individual fibers of any given muscle vary widely in enzyme composition, a fact obscured when enzyme levels of whole muscle are measured. Therefore, the purpose of this part of the study was to assess the effects of microgravity and hind limb suspension on the enzyme patterns within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior).

  10. Insulin resistance for glucose metabolism in disused soleus muscle of mice

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Nicholson, W. F.; Booth, F. W.

    1981-01-01

    Results of this study on mice provide the first direct evidence of insulin resistance for glucose metabolism in skeletal muscle that has undergone a previous period of reduced muscle usage. This lack of responsiveness to insulin developed in one day and in the presence of hypoinsulinemia. Future studies will utilize the model of hindlimb immobilization to determine the causes of these changes.

  11. Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function

    PubMed Central

    Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi

    2000-01-01

    Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (K m) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant

  12. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  13. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  14. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  15. Ultrastructural remodelling of slow skeletal muscle fibres in creatine kinase deficient mice: a quantitative study.

    PubMed

    Novotová, Marta; Tarabová, Bohumila; Tylková, Lucia; Ventura-Clapier, Renée; Zahradník, Ivan

    2016-10-01

    Creatine kinase content, isoform distribution, and participation in energy transfer are muscle type specific. We analysed ultrastructural changes in slow muscle fibres of soleus due to invalidation of creatine kinase (CK) to reveal a difference in the remodelling strategy in comparison with fast muscle fibres of gastrocnemius published previously. We have employed the stereological method of vertical sections and electron microscopy of soleus muscles of wild type (WT) and CK-/- mice. The mitochondrial volume density was 1.4× higher but that of sarcoplasmic reticulum (SR) was almost 5× lower in slow CK-/- muscles fibres than in WT fibres. The volume density of terminal cisterns and of t-tubules was also lower in CK-/- than in WT fibres. The analysis of organelle environment revealed increased neighbourhood of mitochondria and A-bands that resulted from the decreased volume density of SR, from relocation of mitochondria along myofibrils, and from intrusion of mitochondria to myofibrils. These processes direct ATP supply closer to the contractile machinery. The decreased interaction between mitochondria and SR suggests reduced dependence of calcium uptake on oxidative ATP production. In conclusion, the architecture of skeletal muscle cells is under control of a cellular program that optimizes energy utilization specifically for a given muscle type.

  16. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats

    PubMed Central

    Krause Neto, Walter; Silva, Wellington de Assis; Ciena, Adriano P.; de Souza, Romeu R.; Anaruma, Carlos A.; Gama, Eliane F.

    2017-01-01

    The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats. PMID:29326543

  17. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  18. Mechanisms of flow and ACh-induced dilation in rat soleus arterioles are altered by hindlimb unweighting

    NASA Technical Reports Server (NTRS)

    Schrage, William G.; Woodman, Christopher R.; Laughlin, M. Harold

    2002-01-01

    The purpose of this study was to test the hypothesis that endothelium-dependent dilation (flow-induced dilation and ACh-induced dilation) in rat soleus muscle arterioles is impaired by hindlimb unweighting (HLU). Male Sprague-Dawley rats (approximately 300 g) were exposed to HLU or weight-bearing control (Con) conditions for 14 days. Soleus first-order (1A) and second-order (2A) arterioles were isolated, cannulated, and exposed to step increases in luminal flow at constant pressure. Flow-induced dilation was not impaired by HLU in 1A or 2A arterioles. The cyclooxygenase inhibitor indomethacin (Indo; 50 microM) did not alter flow-induced dilation in 1As or 2As. Inhibition of nitric oxide synthase (NOS) with N(omega)-nitro-L-arginine (L-NNA; 300 microM) reduced flow-induced dilation by 65-70% in Con and HLU 1As. In contrast, L-NNA abolished flow-induced dilation in 2As from Con rats but had no effect in HLU 2As. Combined treatment with L-NNA + Indo reduced tone in 1As and 2As from Con rats, but flow-induced dilation in the presence of L-NNA + Indo was not different from responses without inhibitors in either Con or HLU 1As or 2As. HLU also did not impair ACh-induced dilation (10(-9)-10(-4) M) in soleus 2As. L-NNA reduced ACh-induced dilation by approximately 40% in Con 2As but abolished dilation in HLU 2As. Indo did not alter ACh-induced dilation in Con or HLU 2As, whereas combined treatment with L-NNA + Indo abolished ACh-induced dilation in 2As from both groups. We conclude that flow-induced dilation (1As and 2As) was preserved after 2 wk HLU, but HLU decreased the contribution of NOS in mediating flow-induced dilation and increased the contribution of a NOS- and cyclooxygenase-independent mechanism (possibly endothelium-derived hyperpolarizing factor). In soleus 2As, ACh-induced dilation was preserved after 2-wk HLU but the contribution of NOS in mediating ACh-induced dilation was increased.

  19. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, D.A.; Ellis, S.; Giometti, C.S.

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to accountmore » for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.« less

  20. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle

    PubMed Central

    Snook, Laelie A.; Nelson, Emery M.; Dyck, David J.; Wright, David C.

    2015-01-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P < 0.05). These responses occurred without alterations in serum insulin concentrations. In an incubated soleus muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro3)GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown. PMID:26041107

  1. Passive stiffness of rat skeletal muscle undernourished during fetal development

    PubMed Central

    Toscano, Ana Elisa; Ferraz, Karla Mônica; de Castro, Raul Manhães; Canon, Francis

    2010-01-01

    OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet) and an isocaloric low‐protein group (mothers fed a 7.8% protein diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s) enabling us to measure, for each extension stepwise, the dynamic stress (σd) and the steady stress (σs). A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness. PMID:21340228

  2. Changes in muscles accompanying non-weight-bearing and weightlessness

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jaspers, S. R.; Jacob, S.; Kirby, C.

    1989-01-01

    Results of hindlimb suspension and space flight experiments with rats examine the effects of weightlessness simulation, weightlessness, and delay in postflight recovery of animals. Parameters examined were body mass, protein balance, amino acid metabolism, glucose and glycogen metabolism, and hormone levels. Tables show metabolic responses to unweighting of the soleus muscle.

  3. Nerve injury affects the capillary supply in rat slow and fast muscles differently.

    PubMed

    Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida

    2006-02-01

    The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.

  4. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.

    PubMed

    Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J

    2013-07-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.

  5. Effects of passive muscle stiffness measured by Shear Wave Elastography, muscle thickness, and body mass index on athletic performance in adolescent female basketball players.

    PubMed

    Akkoc, Orkun; Caliskan, Emine; Bayramoglu, Zuhal

    2018-05-02

    Athletic performance in basketball comprises the contributions of anaerobic and aerobic performance. The aim was to investigate the effects of passive muscle stiffness, using shear wave elastography (SWE), as well as muscle thickness, and body mass index (BMI), on both aerobic and anaerobic performances in adolescent female basketball players.Material and methods: Anaerobic and aerobic (VO2max) performance was assessed using the vertical jump and shuttle run tests, respectively, in 24 volunteer adolescent female basketball players. Passive muscle stiffness of the rectus femoris (RF), gastrocnemius medialis (GM), gastrocnemius lateralis (GL) and soleus muscles were measured by SWE, and the thickness of each muscle was assessed by gray scale ultrasound. The BMI of each participant was also calculated. The relationship between vertical jump and VO2max values, and those of muscle stiffness, thickness, and BMI were investigated via Pearson's correlation and multivariate linear regression analysis. No significant correlation was observed between muscle stiffness and VO2max or vertical jump (p>0.05). There was significant negative correlation between GL thickness and VO2max (p=0.026), and soleus thickness and VO2max (p=0.046). There was also a significant negative correlation between BMI and VO2max (p=0.001). Conclusions: This preliminary work can be a reference for future research. Although our article indicates that passive muscle stiffness measured by SWE is not directly related to athletic performance, future comprehensive studies should be performed in order to illuminate the complex nature of muscles. The  maintenance of lower muscle thickness and optimal BMI may be associated with better aerobic performance.

  6. Expression of heat shock protein 72 in atrophied rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Oishi, Y.; Ishihara, A.; Talmadge, R. J.; Ohira, Y.; Taniguchi, K.; Matsumoto, H.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P < 0.05) and 53% (P < 0.01) less than CON, respectively. Soleus weight decreased in both groups. Heat shock protein 72 levels in the plantaris of the HU + TEN, HU + DEN, and HU + TEN + DEN groups were 31, 25, and 30% lower than CON, respectively (P < 0.05). Plantaris weight decreased in the HU + DEN and HU + TEN + DEN, but not in the HU + TEN group. Hind limb unloading alone had little effect on the HSP72 level in either muscle. Reduced levels of HSP72 were associated with a decreased soleus (r=0.62, P < 0.01) and plantaris (r=0.78, P < 0.001) weight. These results indicate that the levels of HSP72 in both a slow and a fast rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.

  7. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    PubMed

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  8. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2014-03-01

    Excessive co-contraction causes inefficient or abnormal movement in several neuromuscular pathologies. How synergistic muscles spanning the ankle, knee and hip adapt to co-contraction of ankle muscles is not well understood. This study aimed to identify the compensation strategies required to retain normal walking with excessive antagonistic ankle muscle co-contraction. Muscle-actuated simulations of normal walking were performed to quantify compensatory mechanisms of ankle and knee muscles during stance in the presence of normal, medium and high levels of co-contraction of antagonistic pairs gastrocnemius+tibialis anterior and soleus+tibialis anterior. The study showed that if co-contraction increases, the synergistic ankle muscles can compensate; with gastrocmemius+tibialis anterior co-contraction, the soleus will increase its contribution to ankle plantarflexion acceleration. At the knee, however, almost all muscles spanning the knee and hip are involved in compensation. We also found that ankle and knee muscles alone can provide sufficient compensation at the ankle joint, but hip muscles must be involved to generate sufficient knee moment. Our findings imply that subjects with a rather high level of dorsiflexor+plantarflexor co-contraction can still perform normal walking. This also suggests that capacity of other lower limb muscles to compensate is important to retain normal walking in co-contracted persons. The compensatory mechanisms can be useful in clinical interpretation of motion analyses, when secondary muscle co-contraction or other deficits may present simultaneously in subjects with motion disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effects of thyroid hormone on fast- and slow-twitch skeletal muscles in young and old rats.

    PubMed Central

    Larsson, L; Li, X; Teresi, A; Salviati, G

    1994-01-01

    1. The effects of 4 weeks of thyroid hormone treatment on contractile, enzyme-histochemical and morphometric properties and on the myosin isoform composition were compared in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscle in young (3-6 months) and old (20-24 months) male rats. 2. In the soleus of untreated controls, contraction and half-relaxation times of the isometric twitch increased by 19-32% with age. The change in contractile properties was paralleled by an age-related increase in the proportions of type I fibres and type I myosin heavy chain (MHC) and slow myosin light chain (MLC) isoforms. 3. In the EDL of controls, contraction and half-relaxation times were significantly prolonged (21-38%) in the post-tetanus twitch in the old animals. No significant age-related changes were observed in enzyme-histochemical fibre-type proportions, although the number of fibres expressing both type IIA and IIB MHCs and of fibres expressing slow MLC isoforms was increased in the old animals. 4. Serum 3,5,3',5'-tetraiodothyronine (T4) levels were lower (34%) in the old animals, but the primary byproduct of T4, 3,5,3'-triiodothyronine (T3), did not differ between young and old animals. 5. The effects of 4 weeks of thyroid hormone treatment were highly muscle specific, and were more pronounced in soleus than in EDL, irrespective of animal age. In the soleus, this treatment shortened the contraction and half-relaxation times by 35-57% and decreased the number of type I fibres by 66-77% in both young and old animals. In EDL, thyroid hormone treatment significantly shortened the contraction time by 24%, but the change was restricted to the old animals. 6. In conclusion, the ability of skeletal muscle to respond to thyroid hormone treatment was not impaired in old age and the age-related changes in speed of contraction and enzyme-histochemical properties and myosin isoform compositions were diminished after thyroid hormone treatment in both the

  10. Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle.

    PubMed

    Hayes, A; Williams, D A

    1996-02-01

    Effects of voluntary exercise on the isometric contractile, fatigue, and histochemical properties of hindlimb dystrophic (mdx and 129ReJ dy/dy) skeletal muscles were investigated. Mice were allowed free access to a voluntary running wheel at 4 wk of age for a duration of 16 (mdx) or 5 (dy/dy) wk. Running performance of mdx mice (approximately 4 km/day at 1.6 km/h) was inferior to normal mice (approximately 6.5 km/day at 2.1 km/h). However, exercise improved the force output (approximately 15%) and the fatigue resistance of both C57BL/10 and mdx soleus muscles. These changes coincided with increased proportions of smaller type I fibers and decreased proportions of larger type IIa fibers in the mdx soleus. The extensor digitorum longus of mdx, but not of normal, mice also exhibited improved resistance to fatigue and conversion towards oxidative fiber types. The dy/dy animals were capable of exercising, yet ran significantly less than normal animals (approximately 0.5 km/day). Despite this, running increased the force output of the plantaris muscle (approximately 50%). Taken together, the results showed that exercise can have beneficial effects on dystrophic skeletal muscles.

  11. Comparison of contraction times of a muscle and its motor units

    NASA Technical Reports Server (NTRS)

    Eldred, E.; Smith, L.; Edgerton, V. R.

    1992-01-01

    The twitch contraction time (CT) for each of 13 soleus (SOL) and 13 medial gastrocnemius (MG) muscles was compared with the mean CT from a sample of its motor units (MUs; 356 total) to see if the CT of a whole muscle when tested at its optimal length (Lo) differed systematically from that of its MUs tested at their individual Lo's. The CTs of the whole muscle were significantly longer in the ratio of 1.13. This is consistent with a hypothesis that electrical-field effects result in a more protracted contraction of the individual muscle fiber.

  12. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    PubMed

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.

    PubMed

    Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger

    2014-09-01

    There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles.

    PubMed

    Dufresne, Sébastien S; Dumont, Nicolas A; Boulanger-Piette, Antoine; Fajardo, Val A; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M; Pape, Paul C; Tupling, A Russell; Frenette, Jérôme

    2016-04-15

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function. Copyright © 2016 the American Physiological Society.

  16. Muscle RANK is a key regulator of Ca2+ storage, SERCA activity, and function of fast-twitch skeletal muscles

    PubMed Central

    Dufresne, Sébastien S.; Dumont, Nicolas A.; Boulanger-Piette, Antoine; Fajardo, Val A.; Gamu, Daniel; Kake-Guena, Sandrine-Aurélie; David, Rares Ovidiu; Bouchard, Patrice; Lavergne, Éliane; Penninger, Josef M.; Pape, Paul C.; Tupling, A. Russell

    2016-01-01

    Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca2+ sensor, and altered activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) modulating Ca2+ storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca2+ storage and SERCA activity, ultimately affecting denervated skeletal muscle function. PMID:26825123

  17. The effect of chronic treadmill exercise and acetaminophen on collagen and cross-linking in rat skeletal muscle and heart.

    PubMed

    Carroll, Chad C; Martineau, Karl; Arthur, Kathryn A; Huynh, Richard T; Volper, Brent D; Broderick, Tom L

    2015-02-15

    The purpose of this study was to determine whether exercise and/or acetaminophen (APAP) alter collagen and cross-linking in the rat gastrocnemius muscle, soleus muscle, and heart. Male Wistar rats (n = 50; 8 wk old) were divided into placebo (PLA) or APAP groups and sedentary (SED) or exercised (RUN) groups. APAP (200 mg/kg) was administered daily by oral gavage. Exercised groups ran on a treadmill 5 days/wk for 8 wk with progression to 60 min/day, 20 m/min, and 8° incline. Tissues were assayed for collagen (hydroxyproline) and hydroxylyslpyridinoline (HP) and lysylpyridinoline (LP) cross-links by HPLC. Collagen content (μg/mg dry weight) was greater in both the gastrocnemius (SED-PLA: 114 ± 16 vs. 244 ± 32; P < 0.001) and soleus (SED-PLA: 51 ± 7 vs. 99 ± 27; P = 0.005) of exercised animals. In contrast, collagen content was not significantly greater in exercised animals treated with APAP (SED-APAP: 113 ± 16 vs. 145 ± 21) and soleus (SED-APAP: 55 ± 8 vs. 57 ± 10). HP cross-linking (mmol/mol collagen) in the gastrocnemius (SED-PLA: 126 ± 28, RUN-PLA: 50 ± 7, SED-APAP: 41 ± 7, and 30 ± 4) and soleus muscles (SED-PLA: 547 ± 107, RUN-PLA: 318 ± 92, SED-APAP: 247 ± 64, and 120 ± 17) was lower in exercised rats compared with sedentary rats (P < 0.05). Cross-linking was further reduced in animals treated with APAP (P < 0.05). Neither heart collagen nor cross-linking was influenced by exercise or APAP (P > 0.05). Our findings suggest that exercise and APAP have tissue-specific effects on muscle collagen. Given the widespread use of APAP as an analgesic and antipyretic, further work in humans is warranted. Copyright © 2015 the American Physiological Society.

  18. The involvement of transient receptor potential canonical type 1 in skeletal muscle regrowth after unloading‐induced atrophy

    PubMed Central

    Xia, Lu; Cheung, Kwok‐Kuen; Yeung, Simon S.

    2016-01-01

    Key points Decreased mechanical loading results in skeletal muscle atrophy. The transient receptor potential canonical type 1 (TRPC1) protein is implicated in this process. Investigation of the regulation of TRPC1 in vivo has rarely been reported. In the present study, we employ the mouse hindlimb unloading and reloading model to examine the involvement of TRPC1 in the regulation of muscle atrophy and regrowth, respectively.We establish the physiological relevance of the concept that manipulation of TRPC1 could interfere with muscle regrowth processes following an atrophy‐inducing event. Specifically, we show that suppressing TRPC1 expression during reloading impairs the recovery of the muscle mass and slow myosin heavy chain profile. Calcineurin appears to be part of the signalling pathway involved in the regulation of TRPC1 expression during muscle regrowth.These results provide new insights concerning the function of TRPC1. Interventions targeting TRPC1 or its downstream or upstream pathways could be useful for promoting muscle regeneration. Abstract Decreased mechanical loading, such as bed rest, results in skeletal muscle atrophy. The functional consequences of decreased mechanical loading include a loss of muscle mass and decreased muscle strength, particularly in anti‐gravity muscles. The purpose of this investigation was to clarify the regulatory role of the transient receptor potential canonical type 1 (TRPC1) protein during muscle atrophy and regrowth. Mice were subjected to 14 days of hindlimb unloading followed by 3, 7, 14 and 28 days of reloading. Weight‐bearing mice were used as controls. TRPC1 expression in the soleus muscle decreased significantly and persisted at 7 days of reloading. Small interfering RNA (siRNA)‐mediated downregulation of TRPC1 in weight‐bearing soleus muscles resulted in a reduced muscle mass and a reduced myofibre cross‐sectional area (CSA). Microinjecting siRNA into soleus muscles in vivo after 7 days of

  19. Cigarette smoke directly impairs skeletal muscle function through capillary regression and altered myofibre calcium kinetics in mice.

    PubMed

    Nogueira, Leonardo; Trisko, Breanna M; Lima-Rosa, Frederico L; Jackson, Jason; Lund-Palau, Helena; Yamaguchi, Masahiro; Breen, Ellen C

    2018-05-23

    Cigarette smoke components directly alter muscle fatigue resistance and intracellular muscle fibre Ca 2+ handling independent of a change in lung structure. Changes in muscle vascular structure are associated with a depletion of satellite cells. Sarcoplasmic reticulum Ca 2+ uptake is substantially impaired in myofibres during fatiguing contractions in mice treated with cigarette smoke extract. Cigarette smokers exhibit exercise intolerance before a decline in respiratory function. In the present study, the direct effects of cigarette smoke on limb muscle function were tested by comparing cigarette smoke delivered to mice by weekly injections of cigarette smoke extract (CSE), or nose-only exposure (CS) 5 days each week, for 8 weeks. Cigarette smoke delivered by either route did not alter pulmonary airspace size. Muscle fatigue measured in situ was 50% lower in the CSE and CS groups than in control. This was accompanied by 34% and 22% decreases in soleus capillary-to-fibre ratio of the CSE and CS groups, respectively, and a trend for fewer skeletal muscle actin-positive arterioles (P = 0.07). In addition, fewer quiescent satellite cells (Nes+Pax7+) were associated with soleus fibres in mice with skeletal myofibre VEGF gene deletion (decreased 47%) and CS exposed (decreased 73%) than with control fibres. Contractile properties of isolated extensor digitorum longus and soleus muscles were impaired. In flexor digitorum brevis myofibres isolated from CSE mice, fatigue resistance was diminished by 43% compared to control and CS myofibres, and this was accompanied by a pronounced slowing in relaxation, an increase in intracellular Ca 2+ accumulation, and a slowing in sarcoplasmic reticulum Ca 2+ uptake. These data suggest that cigarette smoke components may impair hindlimb muscle vascular structure, fatigue resistance and myofibre calcium handling, and these changes ultimately affect contractile efficiency of locomotor muscles independent of a change in lung function

  20. Muscle contributions to the acceleration of the whole body centre of mass during recovery from forward loss of balance by stepping in young and older adults.

    PubMed

    Graham, David F; Carty, Christopher P; Lloyd, David G; Barrett, Rod S

    2017-01-01

    The purpose of this study was to determine the muscular contributions to the acceleration of the whole body centre of mass (COM) of older compared to younger adults that were able to recover from forward loss of balance with a single step. Forward loss of balance was achieved by releasing participants (14 older adults and 6 younger adults) from a static whole-body forward lean angle of approximately 18 degrees. 10 older adults and 6 younger adults were able to recover with a single step and included in subsequent analysis. A scalable anatomical model consisting of 36 degrees-of-freedom was used to compute kinematics and joint moments from motion capture and force plate data. Forces for 92 muscle actuators were computed using Static Optimisation and Induced Acceleration Analysis was used to compute individual muscle contributions to the three-dimensional acceleration of the whole body COM. There were no significant differences between older and younger adults in step length, step time, 3D COM accelerations or muscle contributions to 3D COM accelerations. The stance and stepping leg Gastrocnemius and Soleus muscles were primarily responsible for the vertical acceleration experienced by the COM. The Gastrocnemius and Soleus from the stance side leg together with bilateral Hamstrings accelerated the COM forwards throughout balance recovery while the Vasti and Soleus of the stepping side leg provided the majority of braking accelerations following foot contact. The Hip Abductor muscles provided the greatest contribution to medial-lateral accelerations of the COM. Deficits in the neuromuscular control of the Gastrocnemius, Soleus, Vasti and Hip Abductors in particular could adversely influence balance recovery and may be important targets in interventions to improve balance recovery performance.